No Arabic abstract
Although quasi-two-dimensional organic superconductors such as $kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$ seem to be very clean systems, with apparent quasiparticle mean-free paths of several thousand AA, the superconducting transition is intrinsically broad (e.g $sim 1$ K wide for $T_c approx 10$ K). We propose that this is due to the extreme anisotropy of these materials, which greatly exacerbates the statistical effects of spatial variations in the potential experienced by the quasiparticles. Using a statistical model, we are able to account for the experimental observations. A parameter $bar{x}$, which characterises the spatial potential variations, may be derived from Shubnikov-de Haas oscillation experiments. Using this value, we are able to predict a transition width which is in good agreement with that observed in MHz penetration-depth measurements on the same sample.
Effects of non-magnetic disorder on the critical temperature T_c and on diamagnetism of quasi-one-dimensional superconductors are reported. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between wires and that T_c vanishes discontinuously at a critical disorder-strength. The parallel and transverse components of the penetration-depth are evaluated. They diverge at different critical temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and phase-coherence breaking respectively. The interplay between disorder and quantum phase fluctuations is shown to result in quantum critical behavior at T=0, which manifests itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.
We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second-nearest-neighbor hopping strength that maximizes the $d_{x^2-y^2}$ superconducting transition temperature. We find in all cases that the optimal transition temperature occurs at intermediate coupling strength, and is suppressed at strong and weak interaction strengths. Similarly, superconducting fluctuations are strongest at intermediate doping and suppressed towards large doping and half-filling. We find a change in sign of the vertex contributions to $d_{xy}$ superconductivity from repulsive near half filling to attractive at large doping. $p$-wave superconductivity is not found at the parameters we study, and $s$-wave contributions are always repulsive. For negative second-nearest-neighbor hopping the optimal transition temperature shifts towards the electron-doped side in opposition to the van Hove singularity which moves towards hole doping. We surmise that an increase of the local interaction of the electron-doped compounds would increase $T_c$.
After a brief introduction to crystalline organic superconductors and metals, we shall describe two recently-observed exotic phases that occur only in high magnetic fields. The first involves measurements of the non-linear electrical resistance of single crystals of the charge-density-wave (CDW) system (Per)$_2$Au(mnt)$_2$ in static magnetic fields of up to 45 T and temperatures as low as 25 mK. The presence of a fully gapped CDW state with typical CDW electrodynamics at fields higher that the Pauli paramagnetic limit of 34 T suggests the existence of a modulated CDW phase analogous to the Fulde-Ferrell-Larkin-Ovchinnikov state. Secondly, measurements of the Hall potential of single crystals of $alpha$-(BEDT-TTF)$_2$KHg(SCN)$_4$, made using a variant of the Corbino geometry in quasistatic magnetic fields, show persistent current effects that are similar to those observed in conventional superconductors. The longevity of the currents, large Hall angle, flux quantization and confinement of the reactive component of the Hall potential to the edge of the sample are all consistent with the realization of a new state of matter in CDW systems with significant orbital quantization effects in strong magnetic fields.
We report detailed study of angular-dependent magnetoresistance (AMR) with tilting angel $theta$ from $c$-axis ranging from 0$^circ$ to 360$^circ$ on a high-quality FeSe single crystal. A pronounced AMR with twofold symmetry is observed, which is caused by the quasi two-dimensional (2D) Fermi surface. The pronounced AMR is observed only in the orthorhombic phase, indicating that the quasi-2D Fermi surface is induced by the structural transition. Details about the influence of the multiband effect to the AMR are also discussed. Besides, the angular response of a possible Dirac-cone-like band structure is investigated by analyzing the detailed magnetoresistance at different $theta$. The obtained characteristic field ($B^*$) can be also roughly scaled in the 2D approximation, which indicates that the Dirac-cone-like state is also 2D in nature.
We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-filling when 4V > U gives way to a d_{xy} -wave superconducting instability away from half-filling, when the Fermi surface is not perfectly nested, and for sufficiently large repulsive and a range of on-site repulsive interaction. In addition, when nesting is further suppressed and in presence of a nearest-neighbor attraction, a triplet time-reversal breaking (p_x + ip_y)-wave pairing instability emerges, competing with the d_{x2+y2} pairing state that is known to dominate at fillings just slightly away from half. At even smaller fillings, where the Fermi surface no longer presents any nesting, the (p_x +ip_y)-wave superconducting phase dominates in the whole regime of on-site repulsions and nearest-neighbor attractions, while d_{xy}-pairing occurs in the presence of on-site attraction. Our results suggest that zero-energy Majorana fermions can be realized on a square lattice in the presence of a magnetic field. For a system of cold fermionic atoms on a two-dimensional square optical lattice, both an on-site repulsion and a nearest-neighbor attraction would be required, in addition to rotation of the system to create vortices. We discuss possible ways of experimentally engineering the required interaction terms in a cold atom system.