Do you want to publish a course? Click here

The Moment of Inertia and the Scissors Mode of a Bose-condensed Gas

89   0   0.0 ( 0 )
 Added by Onofrio Marago'
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We relate the frequency of the scissors mode to the moment of inertia of a trapped Bose gas at finite temperature in a semi-classical approximation. We apply these theoretical results to the data obtained in our previous study of the properties of the scissors mode of a trapped Bose-Einstein condensate of $^{87}$Rb atoms as a function of the temperature. The frequency shifts that we measured show quenching of the moment of inertia of the Bose gas at temperatures below the transition temperature - the system has a lower moment of inertia that of a rigid body with the same mass distribution, because of superfluidity.



rate research

Read More

A scissors mode of a rotating Bose-Einstein condensate is investigated both theoretically and experimentally. The condensate is confined in an axi-symmetric harmonic trap, superimposed with a small rotating deformation. For angular velocities larger than $omega_perp/sqrt2 $, where $omega_perp$ is the radial trap frequency, the frequency of the scissors mode is predicted to vanish like the square root of the deformation, due to the tendency of the system to exhibit spontaneous rotational symmetry breaking. Measurements of the frequency confirm the predictions of theory. Accompanying characteristic oscillations of the internal shape of the condensate are also calculated and observed experimentally.
We report the first experimental observation of Beliaev damping of a collective excitation in a Bose-condensed gas. Beliaev damping is not predicted by the Gross-Pitaevskii equation and so this is one of the few experiments that tests BEC theory beyond the mean field approximation. Measurements of the amplitude of a high frequency scissors mode, show that the Beliaev process transfers energy to a lower lying mode and then back and forth between these modes. These characteristics are quite distinct from those of Landau damping, which leads to a monotonic decrease in amplitude. To enhance the Beliaev process we adjusted the geometry of the magnetic trapping potential to give a frequency ratio of 2 to 1 between two of the scissors modes of the condensate. The ratios of the trap oscillation frequencies $omega_y / omega_x$ and $omega_z / omega_x$ were changed independently, so that we could investigate the resonant coupling over a range of conditions.
In terms of linearized Gross-Pitaevskii equation we have studied the process of sound emission arises from a supersonic particle motion in a Bose-condensed gas. By analogy with the method used for description of Vavilov-Cherenkov phenomenon, we have found a friction work created by the particle generated condensate polarization. For comparison we have found radiation intensity of excitations. Both methods gives the same result.
125 - D. L. Feder , C. W. Clark 2001
The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored. Though the cloud anisotropy and moment of inertia approach those of a classical fluid at high frequencies, the observed vortex density is consistently lower than the solid-body estimate. Furthermore, the vortices are found to arrange themselves in highly regular triangular arrays, with little distortion even near the condensate surface. These results are shown to be a direct consequence of the inhomogeneous confining potential.
56 - Juhao Wu , A. Widom 1998
In experiments involving Bose condensed atoms trapped in magnetic bottles, plugging the hole in the bottle potential with a LASER beam produces a new potential with two minima, and thus a condensate order parameter (i.e. wave function) with two maxima. When the trapping potential is removed and the condensate explodes away from the trap, the two wave function maxima act as two coherent sources which exhibit amplitude interference. A simplified theoretical treatment of this experimental effect is provided by considering momentum distributions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا