Do you want to publish a course? Click here

Force Chains, Microelasticity and Macroelasticity

61   0   0.0 ( 0 )
 Added by Chay Goldenberg
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been claimed that quasistatic granular materials, as well as nanoscale materials, exhibit departures from elasticity even at small loadings. It is demonstrated, using 2D and 3D models with interparticle harmonic interactions, that such departures are expected at small scales [below O(100) particle diameters], at which continuum elasticity is invalid, and vanish at large scales. The models exhibit force chains on small scales, and force and stress distributions which agree with experimental findings. Effects of anisotropy, disorder and boundary conditions are discussed as well.



rate research

Read More

We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noise-averaged Liouville-von Neumann equation governing the time-evolution of the system reduces to the Lindblad equation with Hermitian Lindblad operators. We show that the noise-averaged density matrix for the system expectation values of the energy density and the number density satisfy discre
In this letter we continue the investigation of finite XXZ spin chains with periodic boundary conditions and odd number of sites, initiated in paper cite{S}. As it turned out, for a special value of the asymmetry parameter $Delta=-1/2$ the Hamiltonian of the system has an eigenvalue, which is exactly proportional to the number of sites $E=-3N/2$. Using {sc Mathematica} we have found explicitly the corresponding eigenvectors for $N le 17$. The obtained results support the conjecture of paper cite{S} that this special eigenvalue corresponds to the ground state vector. We make a lot of conjectures concerning the correlations of the model. Many remarkable relations between the wave function components are noticed. It is turned out, for example, that the ratio of the largest component to the least one is equal to the number of the alternating sing matrices.
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable spin chains -- most famously the Heisenberg model -- is anomalous. Concurrently, the framework of generalized hydrodynamics has been extended to explain some of the mechanisms underlying anomalous transport. We present what is currently understood about these mechanisms, and discuss how they resemble (and differ from) the mechanisms for anomalous transport in other contexts. We also briefly review potential transport anomalies in systems where integrability is an emergent or approximate property. We survey instances of anomalous transport and dynamics that remain to be understood.
The critical Casimir force (CCF) arises from confining fluctuations in a critical fluid and thus it is a fluctuating quantity itself. While the mean CCF is universal, its (static) variance has previously been found to depend on the microscopic details of the system which effectively set a large-momentum cutoff in the underlying field theory, rendering it potentially large. This raises the question how the properties of the force variance are reflected in experimentally observable quantities, such as the thickness of a wetting film or the position of a suspended colloidal particle. Here, based on a rigorous definition of the instantaneous force, we analyze static and dynamic correlations of the CCF for a conserved fluid in film geometry for various boundary conditions within the Gaussian approximation. We find that the dynamic correlation function of the CCF is independent of the momentum cutoff and decays algebraically in time. Within the Gaussian approximation, the associated exponent depends only on the dynamic universality class but not on the boundary conditions. We furthermore consider a fluid film, the thickness of which can fluctuate under the influence of the time-dependent CCF. The latter gives rise to an effective non-Markovian noise in the equation of motion of the film boundary and induces a distinct contribution to the position variance. Within the approximations used here, at short times, this contribution grows algebraically in time whereas, at long times, it saturates and contributes to the steady-state variance of the film thickness.
We investigate self-avoiding walk models of linear block copolymers adsorbed at a surface and desorbed by the action of a force. We rigorously establish the dependence of the free energy on the adsorption and force parameters, and the form of the phase diagram for several cases, including $AB$-diblock copolymers and $ABA$-triblock copolymers, pulled from an end vertex and from the central vertex. Our interest in block copolymers is partly motivated by the occurrence of a novel mixed phase in a directed walk model of diblock copolymers cite{Iliev} and we believe that this paper is the first rigorous treatment of a self-avoiding walk model of the situation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا