Do you want to publish a course? Click here

Phases of Neon, Xenon, and Methane adsorbed on nanotube bundles

260   0   0.0 ( 0 )
 Added by M. Mercedes Calbi
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the behavior of neon, xenon, and methane filmas adsorbed on the external surface of a bundle of carbon nanotubes. The methods used are classical: a ground state calculation, by grand potential energy minimization, and the grand canonical Monte Carlo (GCMC) method of simulation. Our results are similar to those found recently in a GCMC study of Ar and Kr. At low chemical potential (pressure) the particles form a quasi-one dimensional phase within the groove formed by two contiguous tubes. At higher chemical potential, there occurs a three-stripe phase aligned parallel to the groove (except for xenon). This is followed by monolayer and bilayer phases. The low temperature monolayer phase is striped; the number of stripes per nanotube is a quantized function of the adatom size. In the neon case, the bilayer regime also includes a second layer groove phase. Our results are compared with recent thermal and diffraction experiments. We find no evidence of a zig-zag phase reported recently.



rate research

Read More

Grand canonical Monte Carlo simulations have been performed to determine the adsorption behavior of Ar and Kr atoms on the exterior surface of a rope (bundle) consisting of many carbon nanotubes. The computed adsorption isotherms reveal phase transitions associated with the successive creation of quasi-one dimensional lines of atoms near and parallel to the intersection of two adjacent nanotubes.
A theoretical study on the rotational dynamics of H2 molecules trapped in the interstitial channels (ICs) of a carbon nanotube bundle is presented. The potential used in this study is modeled as a sum of atom-atom (C-H) van der Waals interactions and electrostatic interactions of the molecule with the surrounding nanotubes.The rotational energy spectra is calculated using a product wave function, where the coupling between translational and rotational modes is treated in a mean-field manner . Molecular dynamics (MD) simulation study was performed for estimating the hydrogen rotational barrier. Both theoretical calculations and simulation results reveal the existence of a large rotational barrier (~ 40 meV). The consequences of this rotational barrier for the rotational energy levels are worked out in detail.
119 - Wei Ren , C. T. Chan , T. H. Cho 2008
We report a first principles analysis of electronic transport characteristics for (n,n) carbon nanotube bundles. When n is not a multiple of 3, inter-tube coupling causes universal conductance suppression near Fermi level regardless of the rotational arrangement of individual tubes. However, when n is a multiple of 3, the bundles exhibit a diversified conductance dependence on the orientation details of the constituent tubes. The total energy of the bundle is also sensitive to the orientation arrangement only when n is a multiple of 3. All the transport properties and band structures can be well understood from the symmetry consideration of whether the rotational symmetry of the individual tubes is commensurate with that of the bundle.
Helium atoms are strongly attracted to the interstitial channels within a bundle of carbon nanotubes. The strong corrugation of the axial potential within a channel can produce a lattice gas system where the weak mutual attraction between atoms in neighboring channels of a bundle induces condensation into a remarkably anisotropic phase with very low binding energy. We estimate the binding energy and critical temperature for 4He in this novel quasi-one-dimensional condensed state. At low temperatures, the specific heat of the adsorbate phase (fewer than 2% of the total number of atoms) greatly exceeds that of the host material.
157 - M. Salvato , M. Cirillo , M. Lucci 2009
We report on experiments conducted on single walled carbon nanotube bundles aligned in chains and connected through a natural contact barrier. The dependence upon the temperature of the transport properties is investigated for samples having different characteristics. Starting from two bundles separated by one barrier deposited over four contact probes, we extend the study of the transport properties to samples formed by chains of several bundles. The systematic analysis of the properties of these aggregates shows the existence of two conduction regimes in the barrier. We show that an electrical circuit taking into account serial and parallel combinations of voltages generated at the junctions between bundles models the samples consistently.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا