Orbital Correlations in Doped Manganites


Abstract in English

We review our recent x-ray scattering studies of charge and orbital order in doped manganites, with specific emphasis on the role of orbital correlations in Pr_1-xCa_xMnO_3. For x=0.25, we find an orbital structure indistinguishable from the undoped structure with long range orbital order at low temperatures. For dopings 0.3<x<0.5, we find scattering consistent with a charge and orbitally ordered CE-type structure. While in each case the charge order peaks are resolution limited, the orbital order exhibits only short range correlations. We report the doping dependence of the correlation length and discuss the connection between the orbital correlations and the finite magnetic correlation length observed on the Mn^3+ sublattice with neutron scattering techniques. The physical origin of these domains, which appear to be isotropic, remains unclear. We find that weak orbital correlations persist well above the phase transitions, with a correlation length of 1-2 lattice constants at high temperatures. Significantly, we observe similar correlations at high temperatures in La_0.7Ca_0.3MnO_3, which does not have an orbitally ordered ground state, and we conclude that such correlations are robust to variations in the relative strength of the electron-phonon coupling.

Download