Electric field gradients in MgB$_2$ synthesized at high pressure: $^111$Cd TDPAC study and ab initio calculation


Abstract in English

We report the high-pressure synthesis of novel superconductor MgB$_2$ and some related compounds. The superconducting transition temperature of our samples of MgB$_2$ is equal to 36.6 K. The MgB$_2$ lattice parameters determined via X-ray diffraction are in excellent agreement with results of our ab initio calculations. The time-differential perturbed angular correlation (TDPAC) experiments demonstrate a small increase in quadrupole frequency of $^111$Cd probe with decreasing temperature from 293 to 4.2 K. The electric field gradient (EFG) at the B site calculated from first principles is in fair agreement with EFG obtained from $^11$B NMR spectra of MgB$_2$ reported in the literature. It is also very close to EFG found in our $^111$Cd TDPAC measurements, which suggests that the $^111$Cd probe substitutes for boron in the MgB$_2$ lattice.

Download