Evolution of Nanoporosity in Dealloying


Abstract in English

Dealloying is a common corrosion process during which an alloy is parted by the selective dissolution of the electrochemically more active elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents . Even though this morphology evolution problem has attracted considerable attention, the physics responsible for porosity evolution have remained a mystery . Here we show by experiment, lattice computer simulation, and a continuum model, that nanoporosity is due to an intrinsic dynamical pattern formation process - pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters via a spinodal decomposition process at the solid-electrolyte interface. At the same time, the surface area continuously increases due to etching. Together, these processes evolve a characteristic length scale predicted by our continuum model. The applications potential of nanoporous metals is enormous. For instance, the high surface area of nanoporous gold made by dealloying Ag-Au can be chemically tailored, making it suitable for sensor applications, particularly in biomaterials contexts.

Download