Do you want to publish a course? Click here

Self-organized criticality in evolutionary systems with local interaction

77   0   0.0 ( 0 )
 Added by Albert Diaz-Guilera
 Publication date 2001
  fields Physics
and research's language is English
 Authors A. Arenas




Ask ChatGPT about the research

This paper studies a stylized model of local interaction where agents choose from an ever increasing set of vertically ranked actions, e.g. technologies. The driving forces of the model are infrequent upward shifts (``updates), followed by a rapid process of local imitation (``diffusion). Our main focus is on the regularities displayed by the long-run distribution of diffusion waves and their implication on the performance of the system. By integrating analytical techniques and numerical simulations, we come to the following two main conclusions. (1) If dis-coordination costs are sufficiently high, the system behaves critically, in the sense customarily used in physics. (2) The performance of the system is optimal at the frontier of the critical region. Heuristically, this may be interpreted as an indication that (performance-sensitive) evolutionary forces induce the system to be placed ``at the edge of order and chaos



rate research

Read More

The shape of clouds has proven to be essential for classifying them. Our analysis of images from fair weather cumulus clouds reveals that, besides by turbulence they are driven by self-organized criticality (SOC). Our observations yield exponents that support the fact the clouds, when projected to two dimensions (2D), exhibit conformal symmetry compatible with $c=-2$ conformal field theory (CFT), in contrast to 2D turbulence which has $c=0$ CFT. By using a combination of the Navier-Stokes equation, diffusion equations and a coupled map lattice (CML) we successfully simulated cloud formation, and obtained the same exponents.
The concept of percolation is combined with a self-consistent treatment of the interaction between the dynamics on a lattice and the external drive. Such a treatment can provide a mechanism by which the system evolves to criticality without fine tuning, thus offering a route to self-organized criticality (SOC) which in many cases is more natural than the weak random drive combined with boundary loss/dissipation as used in standard sand-pile formulations. We introduce a new metaphor, the e-pile model, and a formalism for electric conduction in random media to compute critical exponents for such a system. Variations of the model apply to a number of other physical problems, such as electric plasma discharges, dielectric relaxation, and the dynamics of the Earths magnetotail.
A system is in a self-organized critical state if the distribution of some measured events (avalanche sizes, for instance) obeys a power law for as many decades as it is possible to calculate or measure. The finite-size scaling of this distribution function with the lattice size is usually enough to assume that any cut off will disappear as the lattice size goes to infinity. This approach, however, can lead to misleading conclusions. In this work we analyze the behavior of the branching rate sigma of the events to establish whether a system is in a critical state. We apply this method to the Olami-Feder-Christensen model to obtain evidences that, in contrast to previous results, the model is critical in the conservative regime only.
113 - Tridib Sadhu 2017
In this thesis we present few theoretical studies of the models of self-organized criticality. Following a brief introduction of self-organized criticality, we discuss three main problems. The first problem is about growing patterns formed in the abelian sandpile model (ASM). The patterns exhibit proportionate growth where different parts of the pattern grow in same rate, keeping the overall shape unchanged. This non-trivial property, often found in biological growth, has received increasing attention in recent years. In this thesis, we present a mathematical characterization of a large class of such patterns in terms of discrete holomorphic functions. In the second problem, we discuss a well known model of self-organized criticality introduced by Zhang in 1989. We present an exact analysis of the model and quantitatively explain an intriguing property known as the emergence of quasi-units. In the third problem, we introduce an operator algebra to determine the steady state of a class of stochastic sandpile models.
Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attacted much comment, ranging from the very positive to the polemical. The other papers in this special issue (Aschwanden et al, 2014; McAteer et al, 2014; Sharma et al, 2015) showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Baks own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner, 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfelds original papers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا