Do you want to publish a course? Click here

Coherent oscillations in a Cooper-pair box

69   0   0.0 ( 0 )
 Added by Christoph Bruder
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper is devoted to an analysis of the experiment by Nakamura {it et al.} (Nature {bf 398}, 786 (1999)) on the quantum state control in Josephson junctions devices. By considering the relevant processes involved in the detection of the charge state of the box and a realistic description of the gate pulse we are able to analyze some aspects of the experiment (like the amplitude of the measurement current) in a quantitative way.



rate research

Read More

The advent of quantum optical techniques based on superconducting circuits has opened new regimes in the study of the non-linear interaction of light with matter. Of particular interest has been the creation of non-classical states of light, which are essential for continuous-variable quantum information processing, and could enable quantum-enhanced measurement sensitivity. Here we demonstrate a device consisting of a superconducting artificial atom, the Cooper pair transistor, embedded in a superconducting microwave cavity that may offer a path toward simple, continual production of non-classical photons. By applying a dc voltage to the atom, we use the ac Josephson effect to inject photons into the cavity. The backaction of the photons on single-Cooper-pair tunneling events results in a new regime of simultaneous quantum coherent transport of Cooper pairs and microwave photons. This single-pair Josephson laser offers great potential for the production of amplitude-squeezed photon states and a rich environment for the study of the quantum dynamics of nonlinear systems.
546 - Z. Kim , V. Zaretskey , Y. Yoon 2008
We have observed a few distinct anomalous avoided level crossings and voltage dependent transitions in the excited state spectrum of an Al/AlOx/Al Cooper-pair box (CPB). The device was measured at 40 mK in the 15 - 50 GHz frequency range. We find that a given level crosses the CPB spectrum at two different gate voltages; the frequency and splitting size of the two crossings differ and the splitting size depends on the Josephson energy of the CPB. We show that this behavior is not only consistent with the CPB being coupled to discrete charged two-level quantum systems which move atomic distances in the CPB junctions but that the spectra provide new information about the fluctuators, which is not available from phase qubit spectra of anomalous avoided levels. In particular by fitting a model Hamiltonian to our data, we extract microscopic parameters for each fluctuator, including well asymmetry, tunneling amplitude, and the minimum hopping distance for each fluctuator. The tunneling rates range from less than 3.5 to 13 GHz, which represent values between 5% and 150% of the well asymmetry, and the dipole moments give a minimum hopping distance of 0.3 to 0.8 Anstrom. We have also found that these discrete two-level systems have a pronounced effect on the relaxation time (T1) of the quantum states of the CPB and hence can be a source of dissipation for superconducting quantum bits.
We propose a scheme to demonstrate the electromagnetically induced transparency (EIT) in a system of a superconducting Cooper-pair box coupled to a nanomechanical resonator. In this scheme, the nanomechanical resonator plays an important role to contribute additional auxiliary energy levels to the Cooper-pair box so that the EIT phenomenon could be realized in such a system. We call it here resonator-assisted induced transparency (RAIT). This RAIT technique provides a detection scheme in a real experiment to measure physical properties, such as the vibration frequency and the decay rate, of the coupled nanomechanical resonator.
A small superconducting electrode (a single-Cooper-pair box) connected to a reservoir via a Josephson junction constitutes an artificial two-level system, in which two charge states that differ by 2e are coupled by tunneling of Cooper pairs. Despite its macroscopic nature involving a large number of electrons, the two-level system shows coherent superposition of the two charge states, and has been suggested as a candidate for a qubit, i.e. a basic component of a quantum computer. Here we report on time-domain observation of the coherent quantum-state evolution in the two-level system by applying a short voltage pulse that modifies the energies of the two levels nonadiabatically to control the coherent evolution. The resulting state was probed by a tunneling current through an additional probe junction. Our results demonstrate coherent operation and measurement of a quantum state of a single two-level system, i.e. a qubit, in a solid-state electronic device.
231 - Y. Tanaka , Y. Asano , 2007
In s-wave superconductors the Cooper pair wave function is isotropic in momentum space. This property may also be expected for Cooper pairs entering a normal metal from a superconductor due to the proximity effect. We show, however, that such a deduction is incorrect and the pairing function in a normal metal is surprisingly anisotropic because of quasiparticle interference. We calculate angle resolved quasiparticle density of states in NS bilayers which reflects such anisotropic shape of the pairing function. We also propose a magneto-tunneling spectroscopy experiment which could confirm our predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا