No Arabic abstract
We consider tunneling in a hybrid system consisting of a superconductor with two or more probe electrodes which can be either normal metals or polarized ferromagnets. In particular we study transport at subgap voltages and temperatures. Besides Andreev pair tunneling at each contact, in multi-probe structures subgap transport involves additional channels, which are due to coherent propagation of two particles (electrons or holes), each originating from a different probe electrode. The relevant processes are electron cotunneling through the superconductor and conversion of two electrons stemming from different probes in a Cooper pair. These processes are non-local and decay when the distance between the pair of involved contacts is larger than the superconducting coherence length. The conductance matrix of a the three terminal hybrid structure is calculated. The multi-probe processes enhance the conductance of each contact. If the contacts are magnetically polarized the contribution of the various conduction channels may be separately detected.
We report characterization and magnetic studies of mixtures of micrometer-size ribbons of Mn$_{12}$ acetate and micrometer-size particles of YBaCuO superconductor. Extremely narrow zero-field spin-tunneling resonance has been observed in the mixtures, pointing to the absence of the inhomogeneous dipolar broadening. It is attributed to the screening of the internal magnetic fields in the magnetic particles by Josephson currents between superconducting grains surrounding the particles.
We report on sub-gap transport measurements of an InAs nanowire coupled to niobium nitride leads at high magnetic fields. We observe a zero-bias anomaly (ZBA) in the differential conductance of the nanowire for certain ranges of magnetic field and chemical potential. The ZBA can oscillate in width with either magnetic field or chemical potential; it can even split and reform. We discuss how our results relate to recent predictions of hybridizing Majorana fermions in semiconducting nanowires, while considering more mundane explanations.
We study a two-terminal graphene Josephson junction with contacts shaped to form a narrow constriction, less than 100nm in length. The contacts are made from type II superconducting contacts and able to withstand magnetic fields high enough to reach the quantum Hall (QH) regime in graphene. In this regime, the device conductance is determined by edge states, plus the contribution from the constricted region. In particular, the constriction area can support supercurrents up to fields of ~2.5T. Moreover, enhanced conductance is observed through a wide range of magnetic fields and gate voltages. This additional conductance and the appearance of supercurrent is attributed to the tunneling between counter-propagating quantum Hall edge states along opposite superconducting contacts.
Recent observations of a zero bias conductance peak in tunneling transport measurements in superconductor--semiconductor nanowire devices provide evidence for the predicted zero--energy Majorana modes, but not the conclusive proof for their existence. We establish that direct observation of a splitting of the zero bias conductance peak can serve as the smoking gun evidence for the existence of the Majorana mode. We show that the splitting has an oscillatory dependence on the Zeeman field (chemical potential) at fixed chemical potential (Zeeman field). By contrast, when the density is constant rather than the chemical potential -- the likely situation in the current experimental set-ups -- the splitting oscillations are generically suppressed. Our theory predicts the conditions under which the splitting oscillations can serve as the smoking gun for the experimental confirmation of the elusive Majorana mode.
We study the transport properties of a hybrid nanostructure composed of a ferromagnet, two quantum dots, and a superconductor connected in series. By using the non-equilibrium Greens function approach, we have calculated the electric current, the differential conductance and the transmittance for energies within the superconductor gap. In this regime, the mechanism of charge transmission is the Andreev reflection, which allows for a control of the current through the ferromagnet polarization. We have also included interdot and intradot interactions, and have analyzed their influence through a mean field approximation. In the presence of interactions, Coulomb blockade tend to localized the electrons at the double-dot system, leading to an asymmetric pattern for the density of states at the dots, and thus reducing the transmission probability through the device. In particular, for non-zero polarization, the intradot interaction splits the spin degeneracy, reducing the maximum value of the current due to different spin-up and spin-down densities of states. Negative differential conductance (NDC) appears for some regions of the voltage bias, as a result of the interplay of the Andreev scattering with electronic correlations. By applying a gate voltage at the dots, one can tune the effect, changing the voltage region where this novel phenomenon appears. This mechanism to control the current may be of importance in technological applications.