Do you want to publish a course? Click here

The random field critical concentration in dilute antiferromagnets

238   0   0.0 ( 0 )
 Added by David P. Belanger
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Monte Carlo techniques are used to investigate the equilibrium threshold concentration, xe, in the dilute anisotropic antiferromagnet Fe(x)Zn(1-x)F2 in an applied magnetic field, considered to be an ideal random-field Ising model system. Above xe equilibrium behavior is observed whereas below xe metastability and domain formation dominate. Monte Carlo results agree very well with experimental data obtained using this system.



rate research

Read More

Neutron scattering experiments at the magnetic vacancy percolation threshold concentration, x_v, using the random-field Ising crystal Fe(0.76)Zn(0.24)F2, show stability of the transition to long-range order up to fields H=6.5 T. The observation of the stable long-range order corroborates the sharp boundary observed in computer simulations at x_v separating equilibrium critical scattering behavior at high magnetic concentration from low concentration hysteretic behavior. Low temperature H>0 scattering line shapes exhibit the dependence on the scattering wavevector expected for percolation threshold fractal structures.
The high magnetic concentration Ising antiferromagnet Fe(0.93)Zn(0.07)F2 does not exhibit the severe critical scattering hysteresis at low temperatures observed in all lower concentration samples studied. The system therefore provides equilibrium neutron scattering line shapes suitable for determining random-field Ising model critical behavior.
117 - Z. Slanic , D. P. Belanger 1997
The specific heat critical behavior is measured and analyzed for a single crystal of the random-field Ising system Fe(0.93)Zn(0.07)F2 using pulsed heat and optical birefringence techniques. This high magnetic concentration sample does not exhibit the severe scattering hysteresis at low temperature seen in lower concentration samples and its behavior is therefore that of an equilibrium random-field Ising model system. The equivalence of the behavior observed with pulsed heat techniques and optical birefringence is established. The critical peak appears to be a symmetric, logarithmic divergence, in disagreement with random-field model computer simulations. The random-field specific heat scaling function is determined.
It has long been believed that equilibrium random-field Ising model (RFIM) critical scattering studies are not feasible in dilute antiferromagnets close to and below Tc(H) because of severe non-equilibrium effects. The high magnetic concentration Ising antiferromagnet Fe(0.93)Zn(0.07)F2, however, does provide equilibrium behavior. We have employed scaling techniques to extract the universal equilibrium scattering line shape, critical exponents nu = 0.87 +- 0.07 and eta = 0.20 +- 0.05, and amplitude ratios of this RFIM system.
Critical scattering analyses for dilute antiferromagnets are made difficult by the lack of predicted theoretical line shapes beyond mean-field models. Nevertheless, with the use of some general scaling assumptions we have developed a procedure by which we can analyze the equilibrium critical scattering in these systems for H=0, the random-exchange Ising model, and, more importantly, for H>0, the random-field Ising model. Our new fitting approach, as opposed to the more conventional techniques, allows us to obtain the universal critical behavior exponents and amplitude ratios as well as the critical line shapes. We discuss the technique as applied to Fe(0.93)Zn(0.07)F2. The general technique, however, should be applicable to other problems where the scattering line shapes are not well understood but scaling is expected to hold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا