Do you want to publish a course? Click here

Alkali specific effects in superconducting fullerides: the observation of a high temperature insulating phase in Na_2CsC_60

164   0   0.0 ( 0 )
 Added by Mr. Ferenc Simon
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electron Spin Resonance and optical reflectivity measurements demonstrate a metal-insulator transition in Na_2CsC_60 as the system passes from the low temperature simple cubic to the high temperature {it fcc} structure above 300 K. The non-conducting electronic state is especially unexpected in view of the metallic character of other, apparently isostructural fullerides, like K_3C_60. The occurence of this phase in Na_2CsC_60 suggests that alkali specific effects can not be neglected in the description of the electronic properties of alkali doped fullerides. We discuss the origin of the insulating state and the relevance of our results for the anomaly observed in the magnitude of the superconducting transition temperature of Na_2AC_60 fullerides.



rate research

Read More

Motivated by the recent experimental report of a possible light-induced superconductivity in A3C60 at high temperature [Mitrano et al., Nature 530, 451 (2016)], we investigate theoretical mechanisms for enhanced superconductivity in A3C60 fullerenes. We find that an `interaction imbalance corresponding to a smaller value of the Coulomb matrix element for two of the molecular orbitals in comparison to the third one, efficiently enhances superconductivity. Furthermore, we perform first-principle calculations of the changes in the electronic structure and in the screened Coulomb matrix elements of A3C60, brought in by the deformation associated with the pumped T1u intra-molecular mode. We find that an interaction imbalance is indeed induced, with a favorable sign and magnitude for superconductivity enhancement. The physical mechanism responsible for this enhancement consists in a stabilisation of the intra-molecular states containing a singlet pair, while preserving the orbital fluctuations allowing for a coherent inter-orbital delocalization of the pair. Other perturbations have also been considered and found to be detrimental to superconductivity. The light-induced deformation and ensuing interaction imbalance is shown to bring superconductivity further into the strong-coupling regime.
As the normal state sheet resistance, $R_n$, of a thin film superconductor increases, its superconducting properties degrade. For $R_nsimeq h/4e^2$ superconductivity disappears and a transition to a nonsuperconducting state occurs. We present electron tunneling and transport measurements on ultrathin, homogeneously disordered superconducting films in the vicinity of this transition. The data provide strong evidence that fluctuations in the amplitude of the superconducting order parameter dominate the tunneling density of states and the resistive transitions in this regime. We briefly discuss possible sources of these amplitude fluctuation effects. We also describe how the data suggest a novel picture of the superconductor to nonsuperconductor transition in homogeneous 2D systems.
The heavy-fermion superconductor CeCoIn$_5$ displays an additional transition within its superconducting (SC) state, whose nature is characterized by high-precision studies of the isothermal field dependence of the entropy, derived from combined specific heat and magnetocaloric effect measurements at temperatures $Tgeq 100$ mK and fields $Hleq 12$ T aligned parallel, perpendicular and $18^circ$ off the tetragonal [100] direction. For any of these conditions, we do not observe an additional entropy contribution upon tuning at constant temperature by magnetic field from the homogeneous SC into the presumed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC state. By contrast, for $Hparallel [100]$ a negative isothermal entropy contribution, compatible with spin-density-wave (SDW) ordering, is found. Our data exclude the formation of a FFLO state in CeCoIn$_5$ for out-of-plane field directions, where no SDW order exists.
We present low temperature measurements of the resistance in magnetic field of superconducting ultrathin amorphous Bi films with normal state sheet resistances, $R_N$, near the resistance quantum, $R_Q={hbarover {e^2}}$. For $R_N<R_Q$, the tails of the resistive transitions show the thermally activated flux flow signature characteristic of defect motion in a vortex solid with a finite correlation length. When $R_N$ exceeds $R_Q$, the tails become non-activated. We conclude that in films where $R_N>R_Q$ there is no vortex solid and, hence, no zero resistance state in magnetic field. We describe how disorder induced quantum and/or mesoscopic fluctuations can eliminate the vortex solid and also discuss implications for the magnetic-field-tuned superconductor-insulator transition.
Thermal conductivity measurements have been performed on the superconducting ferromagnet UCoGe down to very low temperature and under magnetic field. In addition to the electronic quasiparticle thermal conductivity, additional contributions to the thermal transport are detected: they are sensitive to the amplitude and direction of the magnetic field, and at low temperature, they display a strong anisotropy with the heat current direction. We identify these contributions as arising from magnetic fluctuations. Detection of such fluctuations on the thermal transport in 3D weak ferromagnets is very rare if not unique, and pledges for a strongly itinerant character of the magnetism of UCoGe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا