Reentrant layering in rare gas adsorption: preroughening or premelting?


Abstract in English

The reentrant layering transitions found in rare gas adsorption on solid substrates have conflictually been explained either in terms of preroughening (PR), or of top layer melting-solidification phenomena. We obtain adsorption isotherms of Lennard-Jones particles on an attractive substrate by off lattice Grand Canonical Monte Carlo (GCMC) simulation, and reproduce reentrant layering. Microscopic analysis, including layer-by-layer occupancies, surface diffusion and pair correlations, confirms the switch of the top surface layer from solid to quasi-liquid across the transition temperature. At the same time, layer occupancy is found at each jump to switch from close to full to close to half, indicating a disordered flat (DOF) surface and establishing preroughening as the underlying mechanism. Our results suggest that top layer melting is essential in triggering preroughening, which thus represents the threshold transition to surface melting in rare gas solids.

Download