No Arabic abstract
Rotation axis variation due to spin orbit resonance: conference report; keywords: planetary precession, rigid body, chaos, KAM, Arnold diffusion, averaging, celestial mechanics, classical mechanics, large deviations
AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days as well as photometric signals: (1) a short period signal which is similar to the radial velocity signal albeit with considerable variability; and (2) a long term activity cycle of 4070$pm$120 days. We examine the short-term photometric signal in the available ASAS and MOST photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined HARPS and HIRES radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period or as a function of extracted wavelength. We consider a variety of star-spot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots co-rotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin-orbit resonance. For such a scenario and no spin-orbit misalignment, the measured $v sin i$ indicates an inclination angle of 15.5$pm$2.5 deg and a planetary companion mass of 0.237$pm$0.047 M$_{rm Jup}$.
Resonances in the magnetic decoupling curves for the spin relaxation of dense alkali-metal vapors prove that much of the relaxation is due to the spin-axis interaction in triplet dimers. Initial estimates of the spin-axis coupling coefficients for the dimers are 290 MHz for Rb; 2500 MHz for Cs.
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
Spin relaxation can be greatly enhanced in narrow channels of two-dimensional electron gas due to ballistic spin resonance, which is mediated by spin-orbit interaction for trajectories that bounce rapidly between channel walls. The channel orientation determines which momenta affect the relaxation process, so comparing relaxation for two orientations provides a direct determination of spin-orbit anisotropy. Electrical measurements of pure spin currents are shown to reveal an order of magnitude stronger relaxation for channels fabricated along the [110] crystal axis in a GaAs electron gas compared to [-110] channels, believed to result from interference between structural and bulk inversion asymmetries.
The spin-orbit interaction enables interconversion between a charge current and a spin current. It is usually believed that in a nonmagnetic metal (NM) or at a NM/ferromagnetic metal (FM) bilayer interface, the symmetry of spin-orbit effects (SOE) requires that the spin current, charge current and spin orientation are all orthogonal to each other. Here we show the observation of a SOE near the NM/FM interface that exhibits a very different symmetry from the conventional spin Hall effect, insofar as the spin polarization is further rotated about the magnetization. These results imply that a perpendicularly polarized spin current can be generated with an in-plane charge current simply by use of a FM/NM bilayer with magnetization collinear to the charge current. The ability to generate a spin current with arbitrary polarization using typical magnetic materials will greatly benefit the development of magnetic memories.