Do you want to publish a course? Click here

The Supernova Relic Neutrino Background

91   0   0.0 ( 0 )
 Added by Manoj Kaplinghat
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

An upper bound to the supernova relic neutrino background from all past Type II supernovae is obtained using observations of the Universal metal enrichment history. We show that an unambiguous detection of these relic neutrinos by the Super-Kamiokande detector is unlikely. We also analyze the event rate in the Sudbury Neutrino Observatory (where coincident neutrons from anti-nu_e + D --> n + n + e+ might enhance background rejection), and arrive at the same conclusion. If the relic neutrino flux should be observed to exceed our upper bound and if the observations of the metal enrichment history (for z<1) are not in considerable error, then either the Type II supernova rate does not track the metal enrichment history or some mechanism may be responsible for transforming anti-nu_{mu,tau} --> anti-nu_e.



rate research

Read More

We calculate the Supernova Relic Neutrino (SRN) background flux for the KamLAND and Super-Kamiokande (SK) detectors, motivated by the reduction in background at SK and new results for the star formation history (e.g., from the Sloan Digital Sky Survey (SDSS)). Our best estimate for the flux at SK is slightly below, but very close to the current SK upper limit. The SK upper limit is already inconsistent with a range of star formation histories allowed by the SDSS data. We estimate that the SRN background should be detected (at 1-sigma) at SK with a total of about 9 years (including the existing 4 years) of data. While KamLAND is a much smaller detector compared to SK, it profits from being practically background-free and from its sensitivity to the lower energy supernova neutrinos. KamLAND could make a 1-sigma detection of the SRN with a total of about 5 years of data. Given the small expected SRN event rate, we also consider the detection of the SRN in a modified SK detector with a lower threshold and reduced background where the time to detection can be reduced by a factor of 10 relative to the existing SK estimate.
The spectrum of the supernova relic neutrino (SRN) background from past stellar collapses including black hole formation (failed supernovae) is calculated. The redshift dependence of the black hole formation rate is considered on the basis of the metallicity evolution of galaxies. Assuming the mass and metallicity ranges of failed supernova progenitors, their contribution to SRNs is quantitatively estimated for the first time. Using this model, the dependences of SRNs on the cosmic star formation rate density, shock revival time and equation of state are investigated. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. The dependence on equation of state is considered for failed supernovae, whose collapse dynamics and neutrino emission are certainly affected. It is found that the low-energy spectrum of SRNs is mainly determined by the cosmic star formation rate density. These low-energy events will be observed in the Super-Kamiokande experiment with gadolinium-loaded water.
We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with couplings to ordinary active neutrinos large enough to guarantee thermal and chemical equilibrium at epochs in the early universe with temperatures T > 1 GeV, but in a range to give decay lifetimes from seconds to minutes. Such neutrinos would decouple early, with relic densities comparable to those of photons, but decay out of equilibrium, with consequent prodigious entropy generation prior to, or during, Big Bang Nucleosynthesis (BBN). Most of the ranges of sterile neutrino rest mass and lifetime considered are at odds with Cosmic Microwave Background (CMB) limits on the relativistic particle contribution to energy density (e.g., as parameterized by N_eff). However, some sterile neutrino parameters can lead to an acceptable N_eff. These parameter ranges are accompanied by considerable dilution of the ordinary background relic neutrinos, possibly an adverse effect on BBN, but sometimes fall in a range which can explain measured neutrino masses in some particle physics models. A robust signature of these sterile neutrinos would be a measured N_eff not equal to 3 coupled with no cosmological signal for neutrino rest mass when the detection thresholds for these probes are below laboratory-established neutrino mass values, either as established by the atmospheric neutrino oscillation scale or direct measurements with, e.g., KATRIN or neutrino-less double beta decay experiments.
68 - Daniel Kresse 2020
The diffuse cosmic supernova neutrino background (DSNB) is observational target of the gadolinium-loaded Super-Kamiokande (SK) detector and the forthcoming JUNO and Hyper-Kamiokande detectors. Current predictions are hampered by our still incomplete understanding of the supernova (SN) explosion mechanism and of the neutron star (NS) equation of state and maximum mass. In our comprehensive study we revisit this problem on grounds of the landscapes of successful and failed SN explosions obtained by Sukhbold et al. and Ertl et al. with parametrized one-dimensional neutrino engines for large sets of single-star and helium-star progenitors, with the latter serving as proxy of binary evolution effects. Besides considering engines of different strengths, leading to different fractions of failed SNe with black-hole (BH) formation, we also vary the NS mass limit, the spectral shape of the neutrino emission, and include contributions from poorly understood alternative NS-formation channels such as accretion-induced or merger-induced collapse events. Since the neutrino signals of our large model sets are approximate, we calibrate the associated degrees of freedom by using state-of-the-art simulations of proto-neutron star cooling. Our predictions are higher than other recent ones because of a large fraction of failed SNe with long delay to BH formation. Our best-guess model predicts a DSNB electron-antineutrino-flux of 28.8^{+24.6}_{-10.9} cm^{-2}s^{-1} with 6.0^{+5.1}_{-2.1} cm^{-2}s^{-1} in the favorable measurement interval of [10,30] MeV, and 1.3^{+1.1}_{-0.4} cm^{-2}s^{-1} with electron-antineutrino energies > 17.3 MeV, which is roughly a factor of two below the current SK limit. The uncertainty range is dominated by the still insufficiently constrained cosmic rate of stellar core-collapse events.
The Diffuse Supernova Neutrino Background (DSNB) in the MeV regime represents the cumulative cosmic neutrino emission, predominantly due to core collapse supernovae. We estimate the DSNB flux for different Star Formation Rate Density (SFRD) models. We find that the DSNB flux estimated using the SFRD derived from Fermi-LAT Collaboration et al. (2018) is significantly higher ($approx$ 32$%$) relative to the flux estimated using the SFRD from Madau & Fragos (2017). This depicts the sensitivity between the DSNB flux and the SFRD estimates which shows that future detection of the DSNB can be used as a valuable tool to constrain the SFRD.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا