We propose that spontaneous particle--anti-particle pair creations from the discharged vacuum caused by the strong interactions in dense matter are major sources of $gamma$-ray bursts. Two neutron star collisions or black hole-neutron star mergers at cosmological distance could produce a compact object with its density exceeding the critical density for pair creations. The emitted anti-particles annihilate with corresponding particles at the ambient medium. This releases a large amount of energy. We discuss the spontaneous $pbar{p}$ pair creations within two neutron star collision and estimate the exploded energy from $pbar{p}$ annihilation processes. The total energy could be around $10^{51} - 10^{53}$ erg depending on the impact parameter of colliding neutron stars. This value fits well into the range of the initial energy of the most energetic $gamma$-ray bursts.