Do you want to publish a course? Click here

Electron Capture Rates of Mid-fp Shell Nuclei for Supernova and Stellar Evolution

57   0   0.0 ( 0 )
 Added by Soumya Chakravarti
 Publication date 1999
  fields Physics
and research's language is English
 Authors S.Chakravarti




Ask ChatGPT about the research

A detailed model is constructed for the calculation of electron capture rates of some fp-shell nuclei for situations prevailing in pre-supernova and collapse phases of the evolution of the core of massive stars leading to supernova explosion. The model uses explicitly the Gamow-Teller strength function obtained through (n,p) reaction studies wherever available. The rates include contribution from the excited states of the mother as well as from the resonant states in equilibrium with the back reaction i.e. the beta decay of the daughter nucleus. Comparisons are made with the shell model results and the earlier calculations by Aufderheide et al. and Fuller, Fowler and Newman. For the nuclei $^{56}$Fe, $^{55}$Mn and $^{60}$Ni with negative Q-values one observes large contribution from the excited states.



rate research

Read More

Supernova simulations to date have assumed that during core collapse electron captures occur dominantly on free protons, while captures on heavy nuclei are Pauli-blocked and are ignored. We have calculated rates for electron capture on nuclei with mass numbers A=65-112 for the temperatures and densities appropriate for core collapse. We find that these rates are large enough so that, in contrast to previous assumptions, electron capture on nuclei dominates over capture on free protons. This leads to significant changes in core collapse simulations.
This paper presents a systematic evaluation of the ability of theoretical models to reproduce experimental Gamow-Teller transition strength distributions measured via (n,p)-type charge-exchange reactions at intermediate beam energies. The focus is on transitions from stable nuclei in the pf shell (45<A<64). The impact of deviations between experimental and theoretical Gamow-Teller strength distributions on derived stellar electron-capture rates at densities and temperatures of relevance for Type Ia and Type II supernovae is investigated. The theoretical models included in the study are based on the shell-model, using the KB3G and GXPF1a interactions, and quasiparticle random-phase approximation (QRPA) using ground-state deformation parameters and masses from the finite-range droplet model.
Allowed $beta^+$ branches of very proton-rich $fp$ shell $Tz=-2$ nuclei at the proton drip-line are calculated in the full fp valence space. The $beta^+$ decay half-lives calculated with the standard quenching factor ($g^{eff}_{A}/g_{A}$)=0.74 are in good agreement with existing experimental data. Detailed branching Gamow-Teller strength are predicted but comparison with experiment is still difficult since, in most cases, spectroscopic information is not yet available.
340 - Aurelien Pascal 2019
The impact of electron-capture (EC) cross sections on neutron-rich nuclei on the dynamics of core-collapse during infall and early post-bounce is studied performing spherically symmetric simulations in general relativity using a multigroup scheme for neutrino transport and full nuclear distributions in extended nuclear statistical equilibrium models. We thereby vary the prescription for EC rates on individual nuclei, the nuclear interaction for the EoS, the mass model for the nuclear statistical equilibrium distribution and the progenitor model. In agreement with previous works, we show that the individual EC rates are the most important source of uncertainty in the simulations, while the other inputs only marginally influence the results. A recently proposed analytic formula to extrapolate microscopic results on stable nuclei for EC rates to the neutron rich region, with a functional form motivated by nuclear-structure data and parameters fitted from large scale shell model calculations, is shown to lead to a sizable (16%) reduction of the electron fraction at bounce compared to more primitive prescriptions for the rates, leading to smaller inner core masses and slower shock propagation. We show that the EC process involves $approx$ 130 different nuclear species around 86 Kr mainly in the N = 50 shell closure region, and establish a list of the most important nuclei to be studied in order to constrain the global rates.
Electron captures on nuclei play an important role in the dynamics of the collapsing core of a massive star that leads to a supernova explosion. Recent calculations of these capture rates were based on microscopic models which account for relevant degrees of freedom. Due to computational restrictions such calculations were limited to a modest number of nuclei, mainly in the mass range A=45-110. Recent supernova simulations show that this pool of nuclei, however, omits the very neutron-rich and heavy nuclei which dominate the nuclear composition during the last phase of the collapse before neutrino trapping. Assuming that the composition is given by Nuclear Statistical Equilibrium we present here electron capture rates for collapse conditions derived from individual rates for roughly 2700 individual nuclei. For those nuclei which dominate in the early stage of the collapse, the individual rates are derived within the framework of microscopic models, while for the nuclei which dominate at high densities we have derived the rates based on the Random Phase Approximation with a global parametrization of the single particle occupation numbers. In addition, we have improved previous rate evaluations by properly including screening corrections to the reaction rates into account.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا