No Arabic abstract
We investigate the X-ray properties of the powerful radio galaxy Hercules A (3C 348) using ROSAT HRI, PSPC and ASCA observations. The ASCA data are well fit by a thermal plasma model with a temperature of about 4.3 keV and abundances 0.4 solar. The HRI observation clearly reveals extended and elongated X-ray emission. For radii greater than 10 arcsec, the surface brightness profile perpendicular to the elongation is well fit by an isothermal beta--model with beta = 0.63 and a core radius of about 120 kpc. We derive a total mass of the putative cluster of 8.4e+13 M_sun and a gas mass fraction of about 18 per cent. The inner part of the surface brightness profile clealry reveals the presence of a point source, which contributes about 8 per cent to the total flux. The 0.1-2.4 keV luminosity of the point-like and the extended emission is 3.4e+43 and 4.3e+44 erg/s, respectively. After subtracting the cluster X-ray emission from the HRI image, residual structures are visible, which partly coincide with the radio jet and lobes. This indicates an interaction of the radio jet with the intracluster medium.
Restarted radio galaxies represent a unique tool to investigate the duty cycle of the jet activity in Active Galactic Nuclei. Due to a sharp discontinuity of the GHz spectral index distribution within its lobes, the radio galaxy 3C388 has for long being claimed to be a peculiar example of AGN with multi-epoch activity. In this work we have performed, for the first time, a spatially resolved study of the radio spectrum of this source down to MHz-frequencies, aimed at investigating its radiative age and duty cycle. We have used new low frequency observations at 144 MHz performed with LOFAR and at 350 MHz performed with the VLA combined with archival data at higher frequencies. We find that the spectral indices in the lower frequency range 144-614 MHz have flatter values ($sim$0.55-1.14) than those observed in the higher frequency range 1400-4850 MHz ($sim$0.75-1.57) but follow the same distribution across the lobes, with a systematic steepening towards the edges. However, the spectral shape throughout the source is not uniform and often deviates from standard models. This suggests that mixing of different particle populations is occurring, although it remains difficult to understand whether this is caused by observational limitations (insufficient spatial resolution and/or projection effects) or by the intrinsic presence of multiple particle populations, possibly related to the two different outbursts. By using single-injection radiative models we compute that the total source age is $lesssim$80 Myr and that the duty cycle is about $rm t_{on}/t_{tot}sim$ 60%, which is enough to prevent the intracluster medium from cooling according to X-ray estimates. While to date the radio spectral distribution of 3C388 remains a rare case among radio galaxies, upcoming multi-frequency surveys will soon allow us to investigate whether more sources with the same characteristics do actually exist.
We present a multiwavelength study of the nucleus, environment, jets, and hotspots of the nearby FRII radio galaxy 3C 321, using new and archival data from MERLIN, the VLA, Spitzer, HST, and Chandra. An initially collimated radio jet extends northwest from the nucleus of its host galaxy and produces a compact knot of radio emission adjacent (in projection) to a companion galaxy, after which it dramatically flares and bends, extending out in a diffuse structure 35 kpc northwest of the nucleus. We argue that the simplest explanation for the unusual morphology of the jet is that it is undergoing an interaction with the companion galaxy. Given that the northwest hotspot that lies >250 kpc from the core shows X-ray emission, which likely indicates in situ high-energy particle acceleration, we argue that the jet-companion interaction is not a steady-state situation. Instead, we suggest that the jet has been disrupted on a timescale less than the light travel time to the end of the lobe, $sim 10^6$ years, and that the jet flow to this hotspot will only be disrupted for as long as the jet-companion interaction takes place. The host galaxy of 3C 321 and the companion galaxy are in the process of merging, and each hosts a luminous AGN. As this is an unusual situation, we investigate the hypothesis that the interacting jet has driven material on to the companion galaxy, triggering its AGN. Finally, we present detailed radio and X-ray observations of both hotspots, which show that there are multiple emission sites, with spatial offsets between the radio and X-ray emission.
We report the results from an ASCA X-ray observation of the powerful Broad Line Radio Galaxy, 3C109. The ASCA spectra confirm our earlier ROSAT detection of intrinsic X-ray absorption associated with the source. The absorbing material obscures a central engine of quasar-like luminosity. The luminosity is variable, having dropped by a factor of two since the ROSAT observations 4 years before. The ASCA data also provide evidence for a broad iron emission line from the source, with an intrinsic FWHM of ~ 120,000 km/s. Interpreting the line as fluorescent emission from the inner parts of an accretion disk, we can constrain the inclination of the disk to be $> 35$ degree, and the inner radius of the disk to be $< 70$ Schwarzschild radii. Our results support unified schemes for active galaxies, and demonstrate a remarkable similarity between the X-ray properties of this powerful radio source, and those of lower luminosity, Seyfert 1 galaxies.
We present a model for the compression and heating of the ICM by powerful radio galaxies and quasars. Based on a self-similar model of the dynamical evolution of FRII-type objects we numerically integrate the hydrodynamic equations governing the flow of the shocked ICM in between the bow shock and the radio lobes of these sources. The resulting gas properties are presented and discussed. The X-ray emission of the shocked gas is calculated and is found to be in agreement with observations. The enhancement of the X-ray emission of cluster gas due to the presence of powerful radio galaxies may play an important role in the direct detection of cluster gas at high redshifts.
The first detection of a diffuse radio source in a cluster of galaxies, dates back to the 1959 (Coma Cluster, Large et al. 1959). Since then, synchrotron radiating radio sources have been found in several clusters, and represent an important cluster component which is linked to the thermal gas. Such sources indicate the existence of large scale magnetic fields and of a population of relativistic electrons in the cluster volume. The observational results provide evidence that these phenomena are related to turbulence and shock-structures in the intergalactic medium, thus playing a major role in the evolution of the large scale structure in the Universe. The interaction between radio sources and cluster gas is well established in particular at the center of cooling core clusters, where feedback from AGN is a necessary ingredient to adequately describe the formation and evolution of galaxies and host clusters.