Aperture Synthesis Images of Dense Molecular Gas in Nearby Galaxies with the Nobeyama Millimeter Array


Abstract in English

In order to study the distribution of dense molecular gas and its relation to the central activities (starburst and AGN) in galaxies, we have conducted an imaging survey of HCN(1-0) and HCO+(1-0) emissions from nearby spiral galaxies with the Nobeyama Millimeter Array. In starburst galaxies, we find that there is good spatial coincidence between dense molecular gas and star-forming regions. The ratios of HCN to CO integrated intensities on the brightness temperature scale, R(HCN/CO), are as high as 0.1 to 0.2 in the starburst regions, and quickly decrease outside of these regions. In contrast, we find a remarkable decrease of the HCN emission in the post-starburst nuclei, despite the strong CO concentrations there. The R(HCN/CO) values in the central a few 100 pc regions of these quiescent galaxies are very low, 0.02 to 0.04. A rough correlation between R(HCN/CO) and Ha/CO ratios, which is an indicator of star formation efficiency, is found at a few 100 pc scale. The fraction of dense molecular gas in the total molecular gas, measured from R(HCN/CO), may be an important parameter that controls star formation. In some Seyfert galaxies we find extremely high R(HCN/CO) exceeding 0.3. These very high ratios are never observed even in strong starburst regions, implying a physical link between extremely high R(HCN/CO) and Seyfert activity.

Download