Do you want to publish a course? Click here

Tidally-Triggered Star Formation in Close Pairs of Galaxies

174   0   0.0 ( 0 )
 Added by Elizabeth J. Barton
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze new optical spectra of a sample of 502 galaxies in close pairs and n-tuples, separated by <= 50/h kpc. We extracted the sample objectively from the CfA2 redshift survey, without regard to the surroundings of the tight systems. We probe the relationship between star formation and the dynamics of the systems of galaxies. The equivalent widths of Halpha (EW(Halpha) and other emission lines anti-correlate strongly with pair spatial separation (Delta D) and velocity separation. We use the measured EW(Halpha) and the starburst models of Leitherer et al. to estimate the time since the most recent burst of star for- mation began for each galaxy. In the absence of a large contribution from an old stellar population to the continuum around Halpha, the observed Delta D -- EW(Halpha) correlation signifies that starbursts with larger separations on the sky are, on average, older. By matching the dynamical timescale to the burst timescale, we show that the data support a simple picture in which a close pass initiates a starburst; EW(Halpha) decreases with time as the pair separation increases, accounting for the anti-correlation. This picture leads to a method for measuring the duration and the initial mass function of interaction-induced starbursts: our data are compatible with the starburst and orbit models in many respects, as long as the starburst lasts longer than sim10^8 years and the delay between the close pass and the initiation of the starburst is less than a few times 10^7 years. If there is no large contribution from an old stellar population to the continuum around Halpha the Miller-Scalo and cutoff (M <= 30 M_sun) Salpeter initial mass functions fit the data much better than a standard Salpeter IMF. (Abridged.)



rate research

Read More

We extract from the Sloan Digital Sky Survey a sample of 347 systems involving early type galaxies separated by less than 30 kpc, in projection, and 500 km/s in radial velocity. These close pairs are likely progenitors of dry mergers. The (optical) spectra is used to determine how the interaction affects the star formation history and nuclear activity of the galaxies. The emission lines (or lack thereof) are used to classify the sample into AGN, star forming or quiescent. Increased AGN activity and reduced star formation in early-type pairs that already appear to be interacting indicate that the merging process changes the nature of nebular activity, a finding that is also supported by an increase in AGN luminosity with decreasing pair separation. Recent star formation is studied on the absorption line spectra, both through principal component analysis as well as via a comparison of the spectra with composite stellar population models. We find that the level of recent star formation in close pairs is raised relative to a control sample of early-type galaxies. This excess of residual star formation is found throughout the sample of close pairs and does not correlate with pair separation or with visual signs of interaction. Our findings are consistent with a scenario whereby the first stage of the encounter (involving the outer parts of the halos) trigger residual star formation, followed by a more efficient inflow towards the centre -- switching to an AGN phase -- after which the systems are quiescent.
The star formation triggered in dense walls of expanding shells will be discussed. The fragmentation process is studied using the linear and non-linear perturbation theory. The influence of the energy input, the ISM distribution and the speed of sound is examined analytically and by numerical simulations. We formulate the condition for the gravitational fragmentation of expanding shells: if the total surface density of the disc is higher than a certain critical value, shells are unstable. This value depends on the energy of the shell and the sound speed in the ISM. As an example the formation of OB associations near the Sun will be discussed. We trace their orbits in the Milky Way to see where they have been born: 10 - 12 Myr ago progenitors of Scorpius-Centaurus OB associations and the Orion OB association resided together within a sheet-like region elongated in the $l = 20-200degrees direction, showing that the local OB associations may be formed as fragments of an expanding supershell.
109 - Lihwai Lin 2006
Using data from the DEEP2 Galaxy Redshift Survey and HST/ACS imaging in the Extended Groth Strip, we select nearly 100 interacting galaxy systems including kinematic close pairs and morphologically identified merging galaxies. Spitzer MIPS 24 micron fluxes of these systems reflect the current dusty star formation activity, and at a fixed stellar mass (M_{*}) the median infrared luminosity (L_{IR}) among merging galaxies and close pairs of blue galaxies is twice (1.9 +/- 0.4) that of control pairs drawn from isolated blue galaxies. Enhancement declines with galaxy separation, being strongest in close pairs and mergers and weaker in wide pairs compared to the control sample. At z ~ 0.9, 7.1% +/- 4.3% of massive interacting galaxies (M_{*} > 2*10^{10} M_{solar}) are found to be ULIRGs, compared to 2.6% +/- 0.7% in the control sample. The large spread of IR luminosity to stellar mass ratio among interacting galaxies suggests that this enhancement may depend on the merger stage as well as other as yet unidentified factors (e.g., galaxy structure, mass ratio, orbital characteristics, presence of AGN or bar). The contribution of interacting systems to the total IR luminosity density is moderate (<= 36 %).
Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to ``field galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than ``field galaxies is primarily a selection effect. We select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N=2 halos) and a control sample of isolated galaxies (N=1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M_Bj <= -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5%) of these L^star and sub-L^{star} galaxies in isolated 50 (30) kpc/h pairs exhibit star formation that is boosted by a factor of >~ 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of triggered star formation in a cosmological context. (Abridged.)
We discuss spectroscopy and infrared photometry for a complete sample of ~ 800 galaxies in close pairs objectively selected from the CfA2 redshift survey. We use 2MASS to compare near infrared color-color diagrams for our sample with the Nearby Field Galaxy Sample and with a set of IRAS flux-limited pairs from Surace et al. We construct a basic statistical model to explore the physical sources of the substantial differences among these samples. The model explains the spread of near infrared colors and is consistent with a picture where central star formation is triggered by the galaxy-galaxy interaction before a merger occurs. For 160 galaxies we report new, deep JHK photometry within our spectroscopic aperture and we use the combined spectroscopic and photometric data to explore the physical conditions in the central bursts. We find a set of objects with H-K >= 0.45 and with a large F(FIR)/F(H). We interpret the very red H-K colors as evidence for 600-1000 K dust within compact star-forming regions, perhaps similar to super-star clusters identified in individual well-studied interacting galaxies. The galaxies in our sample are candidate ``hidden bursts or, possibly, ``hidden AGN. Over the entire pair sample, both spectroscopic and photometric data show that the specific star formation rate decreases with the projected separation of the pair. The data suggest that the near infrared color-color diagram is also a function of the projected separation; all of the objects with central near infrared colors indicative of bursts of star formation lie at small projected separation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا