We propose and investigate a new formation mechanism for globular clusters in which they form within molecular clouds that are formed in the shocked regions created by galactic winds driven by successive supernova explosions shortly after the initial burst of massive star formation in the galactic centers. The globular clusters have a radial distribution that is more extended than that of the stars because the clusters form as pressure-confined condensations in a shell that is moving outward radially at high velocity. In addition the model is consistent with existing observations of other global properties of globular clusters, as far as comparisons can be made.