Do you want to publish a course? Click here

Iron line afterglows: how to produce them

60   0   0.0 ( 0 )
 Added by Davide Lazzati
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss how a powerful iron line emission can be produced if ~1-5 iron rich solar masses are concentrated in the close vicinity of the burst. Recombination, thermal and fluorescent reflection are discussed. We find that recombination suffers the high Compton temperature of the plasma while the other two scenarios are not mutually exclusive and could account for the claimed iron line detected in two afterglows.

rate research

Read More

The discovery of a powerful and transient iron line feature in the X-ray afterglow spectra of gamma-ray bursts would be a major breakthrough for understanding the nature of their progenitors, strongly suggesting the presence of a large, iron rich, mass in the vicinity of the burst event. Model-independent limits to the size and the mass of the the iron line emitting region are derived and discussed. We also discuss how these results can be used to constrain the amount of beaming or anisotropy of the burst emission.
Existing experimental facilities limit the possibilities for discovery of new nuclides to those synthesized with cross sections above 100 fb, but the perspectives for future high current accelerators could lower this limit by two orders of magnitude. Therefore, in the present work excitation functions for fusion-$xn$ evaporation reaction channels induced not only by $^{48}Ca$ but also by heavier projectiles (usually leading to smaller cross sections) on actinide targets were calculated in the framework of the fusion-by-diffusion (FBD) model. For the first time, in this approach, channels in which a proton ($pxn$) or alpha particle ($alpha$$xn$) is evaporated have been included in the first step of the deexcitation cascade. To calculate the synthesis cross sections entry data such as fission barriers, ground-state masses, deformations and shell effects of the superheavy nuclei calculated in a consistent way within the Warsaw macroscopic-microscopic model were used. The only adjustable parameter of the FBD model is the injection point distance $s_{inj}$ and the value determined in our previous analysis of experimental cross sections for the synthesis of superheavy nuclei of Z=114-118 has been used. Excitation functions for the synthesis of selected (cross section above a few fb) new superheavies in the range of atomic numbers 112-120 are presented. Observation of 21 new heaviest isotopes is predicted. A realistic discussion of the FBD model uncertainties is presented for the first time.
The habitable zone (HZ) is the region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. The classical HZ definition makes a number of assumptions common to the Earth, including assuming that the most important greenhouse gases for habitable planets are CO2 and H2O, habitable planets orbit main-sequence stars, and that the carbonate-silicate cycle is a universal process on potentially habitable planets. Here, we discuss these and other predictions for the habitable zone and the observations that are needed to test them. We also, for the first time, argue why A-stars may be interesting HZ prospects. Instead of relying on unverified extrapolations from our Earth, we argue that future habitability studies require first principles approaches where temporal, spatial, physical, chemical, and biological systems are dynamically coupled. We also suggest that next-generation missions are only the beginning of a much more data-filled era in the not-too-distant future, when possibly hundreds to thousands of HZ planets will yield the statistical data we need to go beyond just finding habitable zone planets to actually determining which ones are most likely to exhibit life.
63 - Eric Burns 2019
Neutron star mergers are the canonical multimessenger events: they have been observed through photons for half a century, gravitational waves since 2017, and are likely to be sources of neutrinos and cosmic rays. Studies of these events enable unique insights into astrophysics, particles in the ultrarelativistic regime, the heavy element enrichment history through cosmic time, cosmology, dense matter, and fundamental physics. Uncovering this science requires vast observational resources, unparalleled coordination, and advancements in theory and simulation, which are constrained by our current understanding of nuclear, atomic, and astroparticle physics. This review begins with a summary of our current knowledge of these events, the expected observational signatures, and estimated detection rates for the next decade. I then present the key observations necessary to advance our understanding of these sources, followed by the broad science this enables. I close with a discussion on the necessary future capabilities to fully utilize these enigmatic sources to understand our universe.
This paper describes an efficiently scalable approach to measure technological similarity between patents by combining embedding techniques from natural language processing with nearest-neighbor approximation. Using this methodology we are able to compute existing similarities between all patents, which in turn enables us to represent the whole patent universe as a technological network. We validate both technological signature and similarity in various ways, and demonstrate at the case of electric vehicle technologies their usefulness to measure knowledge flows, map technological change, and create patent quality indicators. Thereby the paper contributes to the growing literature on text-based indicators for patent landscaping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا