Do you want to publish a course? Click here

Search for TeV Gamma-Rays from Shell-Type Supernova Remnants

101   0   0.0 ( 0 )
 Added by Rodney W. Lessard
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

If cosmic rays with energies <100 TeV originate in the galaxy and are accelerated in shock waves in shell-type supernova remnants (SNRs), gamma-rays will be produced as the result of proton and electron interactions with the local interstellar medium, and by inverse Compton emission from electrons scattering soft photon fields. We report on observations of two supernova remnants with the Whipple Observatorys 10 m gamma-ray telescope. No significant detections have been made and upper limits on the >500 GeV flux are reported. Non-thermal X-ray emission detected from one of these remnants (Cassiopeia A) has been interpreted as synchrotron emission from electrons in the ambient magnetic fields. Gamma-ray emission detected from the Monoceros/Rosette Nebula region has been interpreted as evidence of cosmic-ray acceleration. We interpret our results in the context of these observations.



rate research

Read More

181 - C.D. Dermer , G. Powale 2012
Context: Cosmic rays are thought to be accelerated at supernova remnant (SNR) shocks, but conclusive evidence is lacking. Aims: New data from ground-based gamma-ray telescopes and the Large Area Telescope on the Fermi Gamma-ray Space Telescope are used to test this hypothesis. A simple model for gamma-ray production efficiency is compared with measured gamma-ray luminosities of SNRs, and the GeV to TeV fluxes ratios of SNRs are examined for correlations with SNR ages. Methods: The supernova explosion is modeled as an expanding spherical shell of material that sweeps up matter from the surrounding interstellar medium (ISM). The accumulated kinetic energy of the shell, which provides the energy available for nonthermal particle acceleration, changes when matter is swept up from the ISM and the SNR shell decelerates. A fraction of this energy is assumed to be converted into the energy of cosmic-ray electrons or protons. Three different particle radiation processes---nuclear pion-production interactions, nonthermal electron bremsstrahlung, and Compton scattering---are considered. Results: The efficiencies for gamma-ray production by these three processes are compared with gamma-ray luminosities of SNRs. Our results suggest that SNRs become less gamma-ray luminous at >~ 10^4 yr, and are consistent with the hypothesis that supernova remnants accelerate cosmic rays with an efficiency of ~10% for the dissipation of kinetic energy into nonthermal cosmic rays. Weak evidence for an increasing GeV to TeV flux ratio with SNR age is found.
The breakthrough developments of Cherenkov telescopes in the last decade have led to angular resolution of 0.1{deg} and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes to discover a population of supernova remnants (SNRs) radiating in very-high-energy (VHE, E>100 GeV) gamma-rays. A number of those VHE SNRs exhibit a shell-type morphology spatially coincident with the shock front of the SNR. The members of this VHE shell SNR club are RX J1713.7-3946, Vela Jr, RCW 86, SN 1006, and HESS J1731-347. The latter two objects have been poorly studied in high-energy (HE, 0.1<E<100 GeV) gamma-rays and need to be investigated in order to draw the global picture of this class of SNRs and constrain the characteristics of the underlying population of accelerated particles. Using 6 years of Fermi P7 reprocessed data, we studied the HE counterpart of the SNRs HESS J1731-347 and SN 1006. The two SNRs are not detected in the data and given that there is no hint of detection, we do not expect any detection in the coming years from the SNRs. However in both cases, we derived upper limits that significantly constrain the gamma-ray emission mechanism and can rule out a standard hadronic scenario with a confidence level > 5 sigma. With this Fermi analysis, we now have a complete view of the HE to VHE gamma-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (<1.8) suggesting a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE gamma-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance, all SNRs show a surprisingly similar gamma-ray luminosity supporting the idea of a common emission mechanism. While the gamma-ray emission is likely to be leptonic dominated, this does not rule out efficient hadron acceleration in those SNRs.
The emission mechanism for hard $gamma$-ray spectra from supernova remnants (SNRs) is still a matter of debate. Recent multi-wavelength observations of TeV source HESS J1912+101 show that it is associated with an SNR with an age of $sim 100$ kyrs, making it unlikely produce the TeV $gamma$-ray emission via leptonic processes. We analyzed Fermi observations of it and found an extended source with a hard spectrum. HESS J1912+101 may represent a peculiar stage of SNR evolution that dominates the acceleration of TeV cosmic rays. By fitting the multi-wavelength spectra of 13 SNRs with hard GeV $gamma$-ray spectra with simple emission models with a density ratio of GeV electrons to protons of $sim 10^{-2}$, we obtain reasonable mean densities and magnetic fields with a total energy of $sim 10^{50}$ ergs for relativistic ions in each SNR. Among these sources, only two of them, namely SN 1006 and RCW 86, favor a leptonic origin for the $gamma$-ray emission. The magnetic field energy is found to be comparable to that of the accelerated relativistic ions and their ratio has a tendency of increase with the age of SNRs. These results suggest that TeV cosmic rays mainly originate from SNRs with hard $gamma$-ray spectra.
The shell type SNR RXJ1713.7-3946 is a new SNR discovered by the ROSAT all sky survey. Recently, strong non-thermal X-ray emission from the northwest part of the remnant was detected by the ASCA satellite. This synchrotron X-ray emission strongly suggests the existence of electrons with energies up to hundreds of TeV in the remnant. This SNR is, therefore, a good candidate TeV gamma ray source, due to the Inverse Compton scattering of the Cosmic Microwave Background Radiation by the shock accelerated ultra-relativistic electrons, as seen in SN1006. In this paper, we report a preliminary result of TeV gamma-ray observations of the SNR RXJ1713.7-3946 by the CANGAROO 3.8m telescope at Woomera, South Australia.
Relations between radio surface brightness ($Sigma$) and diameter ($D$) of supernova remnants (SNRs) are important in astronomy. In this paper, following the work Duric & Seaquist (1986) at adiabatic phase, we carefully investigate shell-type supernova remnants at radiative phase, and obtain theoretical $Sigma$-$D$ relation at radiative phase of shell-type supernova remnants at 1 GHz. By using these theoretical $Sigma$-$D$ relations at adiabatic phase and radiative phase, we also roughly determine phases of some supernova remnant from observation data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا