No Arabic abstract
We describe here the important astrophysical results that could be obtained by using large format (say 32 by 32) bolometric detectors at 1 and 2 mm with the IRAM 30m telescope: having a confusion-limited 1 mm extragalactic survey containing a large fraction of high redshift objects, mapping star formation regions in our galaxy at 1 mm, and mapping the Sunyaev-Zeldovich effect at 2 mm in tens of high-redshift clusters. We also show a first optical implementation and the key points of this project.
NIKA2 is a dual-band millimetric continuum camera of 2900 Kinetic Inductance Detectors (KID), operating at $150$ and $260,rm{GHz}$, installed at the IRAM 30-meter telescope. We present the performance assessment of NIKA2 after one year of observation using a dedicated point-source calibration method, referred to as the emph{baseline} method. Using a large data set acquired between January 2017 and February 2018 that span the whole range of observing elevations and atmospheric conditions encountered at the IRAM 30-m telescope, we test the stability of the performance parameters. We report an instantaneous field of view (FOV) of 6.5 in diameter, filled with an average fraction of $84%$ and $90%$ of valid detectors at $150$ and $260,rm{GHz}$, respectively. The beam pattern is characterized by a FWHM of $17.6 pm 0.1$ and $11.1pm 0.2$, and a beam efficiency of $77% pm 2%$ and $55% pm 3%$ at $150$ and $260,rm{GHz}$, respectively. The rms calibration uncertainties are about $3%$ at $150,rm{GHz}$ and $6%$ at $260,rm{GHz}$. The absolute calibration uncertainties are of $5%$ and the systematic calibration uncertainties evaluated at the IRAM 30-m reference Winter observing conditions are below $1%$ in both channels. The noise equivalent flux density (NEFD) at $150$ and $260,rm{GHz}$ are of $9 pm 1, rm{mJy}cdot s^{1/2}$ and $30 pm 3, rm{mJy}cdot s^{1/2}$. This state-of-the-art performance confers NIKA2 with mapping speeds of $1388 pm 174$ and $111 pm 11 ,rm{arcmin}^2cdot rm{mJy}^{-2}cdot rm{h}^{-1}$ at $150$ and $260,rm{GHz}$. With these unique capabilities of fast dual-band mapping at high (better that 18) angular resolution, NIKA2 is providing an unprecedented view of the millimetre Universe.
The New IRAM KID Array (NIKA) instrument is a dual-band imaging camera operating with Kinetic Inductance Detectors (KID) cooled at 100 mK. NIKA is designed to observe the sky at wavelengths of 1.25 and 2.14 mm from the IRAM 30 m telescope at Pico Veleta with an estimated resolution of 13,arcsec and 18 arcsec, respectively. This work presents the performance of the NIKA camera prior to its opening to the astrophysical community as an IRAM common-user facility in early 2014. NIKA is a test bench for the final NIKA2 instrument to be installed at the end of 2015. The last NIKA observation campaigns on November 2012 and June 2013 have been used to evaluate this performance and to improve the control of systematic effects. We discuss here the dynamical tuning of the readout electronics to optimize the KID working point with respect to background changes and the new technique of atmospheric absorption correction. These modifications significantly improve the overall linearity, sensitivity, and absolute calibration performance of NIKA. This is proved on observations of point-like sources for which we obtain a best sensitivity (averaged over all valid detectors) of 40 and 14 mJy.s$^{1/2}$ for optimal weather conditions for the 1.25 and 2.14 mm arrays, respectively. NIKA observations of well known extended sources (DR21 complex and the Horsehead nebula) are presented. This performance makes the NIKA camera a competitive astrophysical instrument.
The NIKA2 polarization channel at 260 GHz (1.15 mm) has been proposed primarily to observe galactic star-forming regions and probe the critical scales between 0.01-0.05 pc at which magnetic field lines may channel the matter of interstellar filaments into growing dense cores. The NIKA2 polarimeter consists of a room temperature continuously rotating multi-mesh HWP and a cold polarizer that separates the two orthogonal polarizations onto two 260 GHz KIDs arrays. We describe in this paper the preliminary results obtained during the most recent commissioning campaign performed in December 2018. We concentrate here on the analysis of the extended sources, while the observation of compact sources is presented in a companion paper [12]. We present preliminary NIKA2 polarization maps of the Crab nebula. We find that the integrated polarization intensity flux measured by NIKA2 is consistent with expectations.In terms of polarization angle, we are still limited by systematic uncertainties that will be further investigated in the forthcoming commissioning campaigns.
The planets Uranus and Neptune with small apparent diameters are primary calibration standards. We investigate their variability at ~90 GHz using archived data taken at the IRAM 30m telescope during the 20 years period 1985 to 2005. We calibrate the planetary observations against non-variable secondary standards (NGC7027, NGC7538, W3OH, K3-50A) observed almost simultaneously. Between 1985 and 2005, the viewing angle of Uranus changed from south-pole to equatorial. We find that the disk brightness temperature declines by almost 10% (~2sigma) over this time span indicating that the south-pole region is significantly brighter than average. Our finding is consistent with recent long-term radio observations at 8.6 GHz by Klein & Hofstadter (2006). Both data sets do moreover show a rapid decrease of the Uranus brightness temperature during the year 1993, indicating a temporal, planetary scale change. We do not find indications for a variation of Neptunes brightness temperature at the 8% level. If Uranus is to be used as calibration source, and if accuracies better than 10% are required, the Uranus sub-earth point latitude needs to be taken into account.
Context. The Neel IRAM KIDs Array (NIKA) is a fully-integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. In a first technical run, NIKA was successfully tested in 2009 at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. This prototype consisted of a 27-42 pixel camera imaging at 150 GHz. Subsequently, an improved system has been developed and tested in October 2010 at the Pico Veleta telescope. The instrument upgrades included dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz, faster sampling electronics enabling synchronous measurement of up to 112 pixels per measurement band, improved single-pixel sensitivity, and the fabrication of a sky simulator to replicate conditions present at the telescope. Results. The new dual-band NIKA was successfully tested in October 2010, performing in-line with sky simulator predictions. Initially the sources targeted during the 2009 run were re-imaged, verifying the improved system performance. An optical NEP was then calculated to be around 2 dot 10-16 W/Hz1/2. This improvement in comparison with the 2009 run verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically-relevant faint and extended objects were then imaged including the Galactic Center SgrB2(FIR1), the radio galaxy Cygnus A and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.