Do you want to publish a course? Click here

Environmental Effects on the Faint End of the Luminosity Function

225   0   0.0 ( 0 )
 Added by Bryn Jones
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent studies have demonstrated that many galaxy clusters have luminosity functions (LFs) which are steep at the faint end. However, it is equally clear that not all clusters have identical LFs. In this paper we explore whether the variation in LF shape correlates with other cluster or environmental properties.



rate research

Read More

The dependence of the luminosity function of cluster galaxies on the evolutionary state of the parent cluster is still an open issue, in particular as concern the formation/evolution of the brightest cluster galaxies. We plan to study the bright part of the LFs of a sample of very unrelaxed clusters (DARC clusters showing evidence of major, recent mergers) and compare them to a reference sample of relaxed clusters spanning a comparable mass and redshift range. Our analysis is based on the SDSS DR7 photometric data of ten, massive, and X-ray luminous clusters (0.2<z<0.3), always considering physical radii (R_200 or its fractions). We consider r band LFs and use the color-magnitude diagrams (r-i,r) to clean our samples as well to consider separately red and blue galaxies. We find that DARC and relaxed clusters give similar LF parameters and blue fractions. The two samples differ for their content of bright galaxies BGs, M_r<-22.5, since relaxed clusters have fewer BGs, in particular when considering the outer cluster region 0.5R_200<R<R_200 (by a factor two). However, the cumulative light in BGs is similar for relaxed and DARC samples. We conclude that BGs grow in luminosity and decrease in number as the parent clusters grow hierarchically in agreement with the BG formation by merging with other luminous galaxies.
We present and discuss optical measurements of the faint end of the galaxy luminosity function down to M_R = -10 in five different local environments of varying galaxy density and morphological content. The environments we studied, in order of decreasing galaxy density, are the Virgo Cluster, the NGC 1407 Group, the Coma I Group, the Leo Group and the NGC 1023 Group. Our results come from a deep wide-angle survey with the NAOJ Subaru 8 m Telescope on Mauna Kea and are sensitive down to very faint surface-brightness levels. Galaxies were identified as group or cluster members on the basis of their surface brightness and morphology. The faintest galaxies in our sample have R ~ 22.5. There were thousands of fainter galaxies but we cannot distinguish cluster members from background galaxies at these faint limits so do not attempt to determine a luminosity function fainter than M_R = -10. In all cases, there are far fewer dwarfs than the numbers of low mass halos anticipated by cold dark matter theory. The mean logarithmic slope of the luminosity function between M_R = -18 and M_R = -10 is alpha ~ -1.2, far shallower than the cold dark matter mass function slope of alpha ~ -1.8. We would therefore need to be missing about 90 per cent of the dwarfs at the faint end of our sample in all the environments we study to achieve consistency with CDM theory.
358 - C.Lobo , A.Biviano , F.Durret 1996
Using our catalogue of V$_{26.5}$ isophotal magnitudes for 6756 galaxies in a region covering 60~$times$~25~arcmin$^2$ in the center of the Coma cluster, plus 267 galaxies in a region of 9.7~$times$~9.4~arcmin$^2$ around NGC~4839, we derive the luminosity function in the magnitude range 13.5$leq V_{26.5} <$ 21.0 (corresponding to the absolute magnitude range $-22.24 < M_{V26.5} leq -14.74$). The luminosity function for this region is well fitted by the combination of a gaussian in its bright part and of a steep Schechter function (of index $alpha =-1.8$) in its faint part. Luminosity functions derived for individual regions surrounding the brightest galaxies show less steep slopes, strongly suggesting the existence of environmental effects. The implications of such effects and galaxy formation scenarios are discussed.
134 - Neil Trentham 1998
I review recent measurements of the faint end of the galaxy luminosity function in galaxy clusters. Evidence is presented that the luminosity function of galaxies in the central parts of clusters is remarkably constant between clusters and that this luminosity function is steep at bright and faint magnitudes and shallow in-between. The curvature is highly significant -- neither a power-law nor a Schechter function is consistent with the data. At no magnitude does alpha=-1 fit the data well. The faintest galaxies in all clusters that have been studied are dwarf spheroidal galaxies.
84 - D. Crnojevic 2018
The Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) is constructing a wide-field map of the resolved stellar populations in the extended halos of these two nearby, prominent galaxies. We present new Magellan/Megacam imaging of a $sim3$ deg$^2$ area around Centaurus A (Cen A), which filled in much of our coverage to its south, leaving a nearly complete halo map out to a projected radius of $sim$150 kpc and allowing us to identify two new resolved dwarf galaxies. We have additionally obtained deep Hubble Space Telescope (HST) optical imaging of eleven out of the thirteen candidate dwarf galaxies identified around Cen A and presented in Crnojevic et al. (2016): seven are confirmed to be satellites of Cen A, while four are found to be background galaxies. We derive accurate distances, structural parameters, luminosities and photometric metallicities for the seven candidates confirmed by our HST/ACS imaging. We further study the stellar population along the $sim$60 kpc long (in projection) stream associated with Dw3, which likely had an initial brightness of $M_{V}$$sim$$-$15 and shows evidence for a metallicity gradient along its length. Using the total sample of eleven dwarf satellites discovered by the PISCeS survey, as well as thirteen brighter previously known satellites of Cen A, we present a revised galaxy luminosity function for the Cen A group down to a limiting magnitude of $M_Vsim-8$, which has a slope of $-1.14pm0.17$, comparable to that seen in the Local Group and in other nearby groups of galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا