No Arabic abstract
The Berkeley spectrograph aboard the ORFEUS telescope made its second flight on the 14-day ORFEUS-SPAS II mission of the Space Shuttle Columbia in November/December 1996. Approximately half of the available observing time was dedicated to the Berkeley spectrograph, which was used by both Principal and Guest Investigators. The spectrographs full bandpass is 390-1218 A; here we discuss its in-flight performance at far-ultraviolet (FUV) wavelengths, where most of the observations were performed. The instruments effective area peaks at 8.9 +/- 0.5 cm^2 near 1020 A, and the mean spectral resolution is 95 km/s FWHM for point sources. Over most of the spectral range, the typical night-time background event rate in each spectral resolution element was about 0.003/s. Simultaneous background observations of an adjacent blank field were provided through a secondary, off-axis aperture. The Berkeley spectrographs unique combination of sensitivity and resolution provided valuable observations of approximately 105 distinct astronomical targets, ranging in distance from the earths own moon to some of the brightest AGN.
We present the first intermediate-resolution (lambda / 3000) spectrum of the bright quasi-stellar object 3C273 at wavelengths between 900 and 1200 A. Observations were performed with the Berkeley spectrograph aboard the ORFEUS-SPAS II mission. We detect Lyman beta counterparts to previously-identified intergalactic Lyman-alpha features at cz = 19900, 1600, and 1000 km/s; counterparts to other putative Lyman-alpha clouds along the sight line are below our detection limit. The strengths of the two very low redshift Lyman-beta features, which are believed to arise in Virgo intracluster gas, exceed preflight expectations, suggesting that the previous determination of the cloud parameters may underestimate the true column densities. A curve-of-growth analysis sets a minimum H I column density of 4 E14/cm^2 for the 1600 km/s cloud. We find marginally significant evidence for Galactic H_2 along the sight line, with a total column density of about 1 E15/cm^2. We detect the stronger interstellar O VI doublet member unambiguously; the weaker member is blended with other features. If the Doppler b value for O VI is comparable to that determined for N V then the O VI column density is 7 +/- 2 E14/cm^2, significantly above the only previous estimate. The O VI / N V ratio is about 10, consistent with the low end of the range observed in the disk. Additional interstellar species detected for the first time toward 3C273 (at modest statistical significance) include P II, Fe III, Ar I, and S III.
During the second flight of the ORFEUS-SPAS mission in November/December 1996, the Echelle spectrometer was used extensively by the Principal and Guest Investigator teams as one of the two focal plane instruments of the ORFEUS telescope. We present the in-flight performance and the principles of the data reduction for this instrument. The wavelength range is 90 nm to 140 nm, the spectral resolution is significantly better than lambda/(Delta lambda) = 10000, where Delta lambda is measured as FWHM of the instrumental profile. The effective area peaks at 1.3 cm^2 near 110 nm. The background is dominated by straylight from the Echelle grating and is about 15% in an extracted spectrum for spectra with a rather flat continuum. The internal accuracy of the wavelength calibration is better than +/- 0.005 nm.
The New Horizons ALICE instrument is a lightweight (4.4 kg), low-power (4.4 Watt) imaging spectrograph aboard the New Horizons mission to Pluto/Charon and the Kuiper Belt. Its primary job is to determine the relative abundances of various species in Plutos atmosphere. ALICE will also be used to search for an atmosphere around Plutos moon, Charon, as well as the Kuiper Belt Objects (KBOs) that New Horizons hopes to fly by after Pluto-Charon, and it will make UV surface reflectivity measurements of all of these bodies as well. The instrument incorporates an off-axis telescope feeding a Rowland-circle spectrograph with a 520-1870 angstroms spectral passband, a spectral point spread function of 3-6 angstroms FWHM, and an instantaneous spatial field-of-view that is 6 degrees long. Different input apertures that feed the telescope allow for both airglow and solar occultation observations during the mission. The focal plane detector is an imaging microchannel plate (MCP) double delay-line detector with dual solar-blind opaque photocathodes (KBr and CsI) and a focal surface that matches the instruments 15-cm diameter Rowland-circle. In what follows, we describe the instrument in greater detail, including descriptions of its ground calibration and initial in flight performance.
Launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include initial coalignment, focusing and characterization of the four instrument channels, and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program, and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of this data and prelaunch laboratory measurements.
Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.5 arcsec diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400 to 1700 A. In the two brightest comets, nineteen bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 A by the Space Telescope Imaging Spectrograph (STIS). The derived CO/H2O production rate ratio ranged from ~0.3% for Hartley 2 to ~22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 A and 1479 A, and of C I at 1561 A and 1657 A, were observed in all four comets. Weak emission from several lines of the H2 Lyman band system, excited by solar Lyman-alpha and Lyman-beta pumped fluorescence, were detected in comet Lovejoy.