Do you want to publish a course? Click here

Geomagnetic Field and Air Shower Simulations

57   0   0.0 ( 0 )
 Added by Analia Cillis
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

The influence of the geomagnetic field on the development of air showers is studied. The well known International Geomagnetic Reference Field was included in the AIRES air shower simulation program as an auxiliary tool to allow calculating very accurate estimations of the geomagnetic field given the geographic coordinates, altitude above sea level and date of a given event. Some test simulations made for representative cases indicate that some quantities like the lateral distribution of muons experiment significant modifications when the geomagnetic field is taken into account.



rate research

Read More

Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by very high energy (VHE) gamma-rays impinging on the Earths atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site. Additionally we show that measurements of sub-TeV gamma-rays from the Crab nebula are affected even for a low GF strength of less than 33 micro Tesla.
68 - A. Cillis , S. J. Sciutto 1999
The influence of the geomagnetic field on the development of air showers is studied. The well known International Geomagnetic Reference Field was included in the AIRES air shower simulation program as an auxiliary tool to allow calculating very accurate estimations of the geomagnetic field given the geographic coordinates, altitude above sea level and date of a given event. Our simulations indicate that the geomagnetic deflections alter significantly some shower observables like, for example, the lateral distribution of muons in the case of events with large zenith angles (larger than 75 degrees). On the other hand, such alterations seem not to be important for smaller zenith angles. Global observables like total numbers of particles or longitudinal development parameters do not present appreciable dependences on the geomagnetic deflections for all the cases that were studied.
513 - T. Huege 2013
A precise understanding of the radio emission from extensive air showers is of fundamental importance for the design of cosmic ray radio detectors as well as the analysis and interpretation of their data. In recent years, tremendous progress has been made in the understanding of the emission physics both in macroscopic and microscopic frameworks. A consistent picture has emerged: the emission stems mainly from time-varying transverse currents and a time-varying charge excess; in addition, Cherenkov-like compression of the emission due to the refractive index gradient in the atmosphere can lead to time-compression of the emitted pulses and thus high-frequency contributions in the signal. In this article, I discuss the evolution of the modelling in recent years, present the emission physics as it is understood today, and conclude with a description and comparison of the models currently being actively developed.
In this work, direct measurements of the muon density at $1000,textrm{m}$ from the shower axis obtained by the Akeno Giant Air Shower Array (AGASA) are analysed. The selected events have zenith angles $theta leq 36^{textrm{o}}$ and reconstructed energies in the range $18.83,leq,log_{10}(E_{R}/textrm{eV}),leq,19.46$. These are compared to the predictions corresponding to proton, iron, and mixed composition scenarios obtained by using the high-energy hadronic interaction models EPOS-LHC, QGSJetII-04, and Sibyll2.3c. The mass fractions of the mixed composition scenarios are taken from the fits to the depth of the shower maximum distributions performed by the Pierre Auger Collaboration. The cross-calibrated energy scale from the Spectrum Working Group [D. Ivanov, for the Pierre Auger Collaboration and the Telescope Array Collaboration, PoS(ICRC2017) 498 (2017)] is used to combine results from different experiments. The analysis shows that the AGASA data are compatible with a heavier composition with respect to the one predicted by the mixed composition scenarios. Interpreting this as a muon deficit in air shower simulations, the incompatibility is quantified. The muon density obtained from AGASA data is greater than that of the mixed composition scenarios by a factor of $1.49pm0.11,textrm{(stat)}pm0.18,textrm{(syst)}$, $1.54pm0.12,textrm{(stat)}pm0.18,textrm{(syst)}$, and $1.66pm0.13,textrm{(stat)}pm0.20,textrm{(syst)}$ for EPOS-LHC, Sibyll2.3c, and QGSJetII-04, respectively.
The aim of this report of the Working Group on Hadronic Interactions and Air Shower Simulation is to give an overview of the status of the field, emphasizing open questions and a comparison of relevant results of the different experiments. It is shown that an approximate overall understanding of extensive air showers and the corresponding hadronic interactions has been reached. The simulations provide a qualitative description of the bulk of the air shower observables. Discrepancies are however found when the correlation between measurements of the longitudinal shower profile are compared to that of the lateral particle distributions at ground. The report concludes with a list of important problems that should be addressed to make progress in understanding hadronic interactions and, hence, improve the reliability of air shower simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا