Circumstellar shells and mass loss rates: Clues to the evolution of S stars


Abstract in English

It is the purpose of this paper to rediscuss the circumstellar properties of S stars and to put these properties in perspective with our current understanding of the evolutionary status of S stars, in particular the intrinsic/extrinsic dichotomy. Accordingly, an extensive data set probing the circumstellar environment of S stars (IRAS flux densities, maser emission, CO rotational lines) has been collected and critically evaluated. This data set combines new observations (9 stars have been observed in the CO J=2-1 line and 3 in the CO J=3-2 line, with four new detections) with existing material (all CO and maser observations of S stars published in the literature). The IRAS flux densities of S stars have been re-evaluated by co-adding the individual scans, in order to better handle the intrinsic variability of these stars in the IRAS bands, and possible contamination by Galactic cirrus. Mass loss rates or upper limits have been derived for all S stars observed in the CO rotational lines, and range from < 2 10^{-8} Msun y^{-1} for extrinsic S stars to 10^{-5} Msun y^{-1}. These mass-loss rates correlate well with the K - [12] color index, which probes the dust loss rate, provided that the mass loss rate be larger than 10^{-8} Msun~y^{-1}. Small mass-loss rates are found for extrinsic S stars, consistent with their not being so evolved (RGB or Early-AGB) as the Tc-rich S stars. This result does not support the claim often made in relation with symbiotic stars that binarity strongly enhances the mass-loss rate.

Download