Non-Uniform Outflow Observed around Infrared Object NML Cygni


Abstract in English

Measurements by the U.C. Berkeley Infrared Spatial Interferometer at 11.15 micron have yielded strong evidence for multiple dust shells and/or significant asymmetric dust emission around NML Cyg. New observations reported also include multiple 8-13 micron spectra taken from 1994-1995 and N band (10.2 micron) photometry from 1980-1992. These and past measurements are analyzed and fitted to a model of the dust distribution around NML Cyg. No spherically symmetric single dust shell model is found consistent with both near- and mid-infrared observations. However, a circularly symmetric maximum entropy reconstruction of the 11 micron brightness distribution suggests a double shell model for the dust distribution. Such a model, consisting of a geometrically thin shell of intermediate optical depth ($tau_{11 micron} sim 1.9$) plus an outer shell ($tau_{11 micron} sim 0.33$), is consistent not only with the 11 micron visibility data, but also with near-infrared speckle measurements, the broadband spectrum, and the 9.7 micron silicate feature. The outer shell, or large scale structure, is revealed only by long-baseline interferometry at 11 micron, being too cold ($sim$ 400 K) to contribute in the near-infrared and having no unambiguous spectral signature in the mid-infrared. The optical constants of Ossenkopf, Henning, & Mathis (1992) proved superior to the Draine & Lee (1984) constants in fitting the detailed shape of the silicate feature and broadband spectrum for this object. Recent observations of H$_2$O maser emission around NML Cyg by Richards, Yates, & Cohen (1996) are consistent with the location of the two dust shells and provide further evidence for the two-shell model.

Download