Do you want to publish a course? Click here

Spectral Variability and iron line emission in the ASCA Observations of the Seyfert 1 Galaxy NGC4051

60   0   0.0 ( 0 )
 Added by ul
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of an extensive analysis of the ``ASCA AO2 observation of the Seyfert 1 galaxy NGC4051. The target exhibits broadband [0.5--10 keV] variability by a factor $sim 8$ on time scales $sim 10^4 s$, with a typical doubling time $sim 500 s$. The spectrum is characterized by a strong emission excess over the extrapolated power law at energies $E le 1 keV$. Absorption edges due to ionized oxygen species OVII and OVIII are detected together with an emission-like feature at $E sim 0.93 keV$. The OVII edge undergoes significant variability on a timescale as low as $sim 10^4 s$, whilst no contemporary variability of the OVIII feature is detected. Typical variability time scales place constraints on the location and the density of the absorbing matter. In the self-consistent hypothesis of a high energy ($E ge 2.3 keV$) power law reflected by an infinite plane-parallel cold slab, a photon index change ($Delta Gamma = 0.4$) has also been observed; a natural explanation can be found in the framework of non-thermal Comptonization models. The iron line is redshifted (centroid energy $E sim 6.1 keV$) and broad ($sigma > 0.2 keV$); multicomponent structure is suggestive of emission from a relativistic accretion disk; however if the disk is not ionized a contribution by a molecular torus or an iron overabundance by a factor $sim 1.5$ are required.



rate research

Read More

368 - T.J.Turner , P.Romano , I.M.George 2001
We present a 35 day ASCA observation of the NLS1 Akn 564, which was part of a multiwavelength AGN Watch monitoring campaign. Akn 564 shows a photon index varying across the range 2.45--2.72. The presence of the soft hump component below 1 keV, previously detected in ASCA data, is confirmed. Time-resolved spectroscopy with ~daily sampling reveals a distinction in the variability of the soft hump and power-law components over a timescale of weeks, with the hump varying by a factor of 6 across the 35-day observation compared to a factor 4 in the power-law. Flux variations in the power-law component are measured down to a timescale of ~1000s and accompanying spectral variability suggests the soft hump is not well-correlated with the power-law on such short timescales. We detect Fe Ka and a blend of Fe Kb plus Ni Ka, indicating an origin in highly ionized gas. Variability measurements constrain the bulk of the Fe Ka to originate within a light week of the nucleus. The large EW of the emission lines may be due to high metallicity in NLS1s, supporting some evolutionary models for AGN.
The narrow [O III] 4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow line-emitting region has a radius of only 1-3 pc and is denser (n ~ 10^5 cm^{-3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass.Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hbeta emission-line light curves for the period 1988 to 2008.
Since the discovery of the first broad iron-K line in 1995 from the Seyfert Galaxy MCG--6-30-15, broad iron-K lines have been found in several other Seyfert galaxies, from accreting stellar mass black holes and even from accreting neutron stars. The iron-K line is prominent in the reflection spectrum created by the hard X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron-L line emission should be detectable when the iron abundance is high. Here we report the first discovery of both iron-K and L emission, using XMM-Newton observations of the Narrow-Line Seyfert 1 Galaxy 1H0707-495. The bright Fe-L emission has enabled us, for the first time, to detect a reverberation lag of 30 s between the direct X-ray continuum and its reflection from matter falling into the hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light-minute, from the event horizon of a rapidly-spinning, massive black hole.
98 - Paul M. ONeill 2007
We report on a 133 ks XMM-Newton observation of the Seyfert 1 galaxy Markarian 335. The 0.4-12 keV spectrum contains an underlying power law continuum, a soft excess below 2 keV, and a double-peaked iron emission feature in the 6-7 keV range. We investigate the possibility that the double-peaked emission might represent the characteristic signature of the accretion disc. Detailed investigations show that a moderately broad, accretion disc line is most likely present, but that the peaks may be owing to narrower components from more distant material. The peaks at 6.4 and 7 keV can be identified, respectively, with the molecular torus in active galactic nucleus unification schemes, and very highly ionized, optically thin gas filling the torus. The X-ray variability spectra on both long (~100 ks) and short (~1 ks) timescales disfavour the recent suggestion that the soft excess is an artifact of variable, moderately ionized absorption.
We have carried out a systematic analysis of the nearby (z=0.0279) active galaxy Zw 229.015 using multi-epoch, multi-instrument and deep pointed observations with XMM-Newton, Suzaku, Swift and NuSTAR. Spectral and temporal variability are examined in detail on both the long (weeks-to-years) and short (hours) timescales. A deep Suzaku observation of the source shows two distinct spectral states; a bright-soft state and a dim-hard state in which changes in the power law component account for the differences. Partial covering, blurred reflection and soft Comptonisation models describe the X-ray spectra comparably well, but the smooth, rather featureless, spectrum may be favouring the soft Comptonisation scenario. Moreover, independent of the spectral model, the observed spectral variability is ascribed to the changes in the power law continuum only and do not require changes in the properties of the absorber or blurred reflector incorporated in the other scenarios. The multi-epoch observations between 2009 and 2018 can be described in similar fashion. This could be understood if the primary emission is originating at a large distance from a standard accretion disc or if the disc is optically thin and geometrically thick as recently proposed for Zw 229.015. Our investigation shows that Zw 229.015 behaves similar to sources like Akn 120 and Mrk 530, that exhibit a strong soft-excess, but weak Compton hump and Fe K${alpha}$ emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا