Do you want to publish a course? Click here

Star Counts in the Globular Cluster Omega Centauri. I. Bright Stellar Components

230   0   0.0 ( 0 )
 Added by Annalisa Calamida
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an extensive photometry on HB, RGB, and MSTO stars in Omega Cen. The central regions of the cluster were covered with a mosaic of F435W, F625W, and F658N-band data collected with ACS/HST. The outer reaches were covered with a large set of U,B,V,I-band data collected with the [email protected] ESO/MPI telescope. The final catalogue includes ~1.7 million stars. We identified ~3,200 likely HB stars and ~12,500 stars brighter than the subgiant branch and fainter than the RGB bumps. The HB morphology changes with the radial distance. The relative number of extreme HB stars decreases from ~30% to ~21% when moving from the center toward the outer regions of the cluster, while the fraction of less hot HB stars increases from ~62% to ~72%. We performed a detailed comparison between observed ratios of different stellar tracers and predictions based on canonical evolutionary models with a primordial helium (Y=0.23) content and metal abundances (Z=0.0002,0.001) that bracket the observed spread in metallicity of Omega Cen stars. We found that the empirical star counts of HB stars are on average larger (30%-40%) than predicted. Moreover, the rate of HB stars is 43% larger than the MSTO rate. The discrepancy between the rate of HB compared with the rate of RG and MSTO stars supports the evidence that we are facing a true excess of HB stars. The same comparison was performed by assuming a mix of stellar populations made with 70% of canonical stars and 30% of He-enhanced stars. The discrepancy between theory and observations decreases by a factor of two when compared with rates predicted by canonical He content models, but still 15%-25% (Y=0.42) and 15%-20% (Y=0.33) higher than observed. Furthermore, the ratio between HB and MSTO star counts are ~24% (Y=0.42) and 30% (Y=0.33) larger than predicted lifetime ratios.



rate research

Read More

We present manganese abundances in 10 red-giant members of the globular cluster Omega Centauri; 8 stars are from the most metal-poor population (RGB MP and RGB MInt1) while two targets are members of the more metal rich groups (RGB MInt2 and MInt3). This is the first time Mn abundances have been studied in this peculiar stellar system. The LTE values of [Mn/Fe] in Omega Cen overlap those of Milky Way stars in the metal poor Omega Cen populations ([Fe/H] ~ -1.5 to -1.8), however unlike what is observed in Milky Way halo and disk stars, [Mn/Fe] declines in the two more metal-rich RGB MInt2 and MInt3 targets. Non-LTE calculations were carried out in order to derive corrections to the LTE Mn abundances. The non-LTE results for Omega Cen in comparison with the non-LTE [Mn/Fe] versus [Fe/H] trend obtained for the Milky Way confirm and strengthen the conclusion that the manganese behavior in Omega Cen is distinct. These results suggest that low-metallicity supernovae (with metallicities < -2) of either Type II or Type Ia dominated the enrichment of the more metal-rich stars in Omega Cen. The dominance of low-metallicity stars in the chemical evolution of Omega Cen has been noted previously in the s-process elements where enrichment from metal-poor AGB stars is indicated. In addition, copper, which also has metallicity dependent yields, exhibits lower values of [Cu/Fe] in the RGB MInt2 and MInt3 Omega Cen populations.
122 - S.-C. Rey 2003
We present wide-field and high-precision BV and Ca & Stromgren by photometry of omega Centauri, which represents one of the most extensive photometric surveys to date for this cluster. The member stars of omega Cen are well discriminated from foreground Galactic field stars in the hk [=(Ca-b)-(b-y)] vs. b-y diagram. The resulting cleaned color-magnitude diagram (CMD) has allowed us to obtain an accurate distribution of the red horizontal branch (HB) and the asymptotic giant branch stars. We confirm the presence of several red giant branches (RGBs) with the most metal-rich sequence well separated from other bluer metal-poor ones. Our population models suggest that four populations with different metallicities can reproduce the observed nature of the RGB. The HB distribution is also found to be consistent with the multiple stellar populations of the RGB. From our population models, we propose that the most metal-rich population is about 4 Gyr younger than the dominant metal-poor population, indicating that omega Cen was enriched over this timescale. We identify, for the first time, a continuous and slanting RGB bump in the CMD of omega Cen, which is due to the metallicity spread amongst the RGB stars. Our photometry also reveals a significant population of blue straggler stars. The discovery of several populations and the internal age-metallicity relation of omega Cen provides good evidence that omega Cen was once part of a more massive system that merged with the Milky Way, as the Sagittarius dwarf galaxy is in the process of doing at the present time.
We present deep and precise photometry (F435, F625W, F658N) of Omega Cen collected with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). We have identified ~ 6,500 white dwarf (WD) candidates, and the ratio of WD and Main Sequence (MS) star counts is found to be at least a factor of two larger than the ratio of CO-core WD cooling and MS lifetimes. This discrepancy is not explained by the possible occurrence of a He-enhanced stellar population, since the MS lifetime changes by only 15% when changing from a canonical (Y=0.25) to a He-enhanced composition (Y=0.42). The presence of some He-core WDs seems able to explain the observed star counts. The fraction of He WDs required ranges from 10% to 80% depending on their mean mass and it is at least five times larger than for field WDs. The comparison in the Color Magnitude Diagram between theory and observations also supports the presence of He WDs. Empirical evidence indicates that He WDs have been detected in stellar systems hosting a large sample of extreme horizontal branch stars, thus suggesting that a fraction of red giants might avoid the He-core flash.
In this letter, the results of our low-resolution spectroscopic survey for identifying the hydrogen-deficient (H-deficient) stars in the red giant sample of the globular cluster Omega Cen are reported. Spectral analyses were carried out on the basis of the strengths of (0,0) MgH band and the Mg b triplet. In our sample, four giants were identified with weak/absent MgH bands in their observed spectra not as expected for their well determined stellar parameters. The Mg abundances for the program stars were determined from subordinate lines of the MgH band to the blue of the Mg b triplet, using the spectral synthesis technique. The derived Mg abundances for the program stars were as expected for the red giants of Omega Cen (Norris & Da Costa 1995), except for the four identified candidates. Determined Mg abundances of these four candidates are much lower than that expected for the red giants of Omega Cen, and are unacceptable based on the strengths of Mg b triplet in their observed spectra. Hence, the plausible reason for the weak/absent MgH bands in the observed spectra of these stars is a relatively lower abundance of hydrogen in their atmospheres. These giants may belong to the group of helium enriched red giants of Omega Cen.
We present deep multiband (F435W, F625W, and F658N) photometric data of the Globular Cluster Omega Cen collected with the Advanced Camera for Surveys on board of the Hubble Space Telescope. We identified in the (F435W-F625W, F435W) plane more than two thousand White Dwarf (WD) candidates using three out of nine available pointings. Such a large sample appears in agreement with predictions based on the ratio between WD and Horizontal Branch (HB) evolutionary lifetimes. We also detected ~ 1600 WDs in the (F658N-F625W, F625W) plane, supporting the evidence that a large fraction of current cluster WDs are $H_alpha$ bright.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا