Do you want to publish a course? Click here

Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey

80   0   0.0 ( 0 )
 Added by M. Polletta
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the spectral energy distributions (SEDs) of a hard X-ray selected sample. The sample contains 136 sources with F(2-10 keV)>10^-14 erg/cm^2/s and 132 are AGNs. The sources are detected in a 1 square degree area of the XMM-Newton-Medium Deep Survey where optical data from the VVDS, CFHTLS surveys, and infrared data from the SWIRE survey are available. Based on a SED fitting technique we derive photometric redshifts with sigma(1+z)=0.11 and 6% of outliers and identify AGN signatures in 83% of the objects. This fraction is higher than derived when a spectroscopic classification is available. The remaining 17+9-6% of AGNs shows star-forming galaxy SEDs (SF class). The sources with AGN signatures are divided in two classes, AGN1 (33+6-1%) and AGN2 (50+6-11). The AGN1 and AGN2 classes include sources whose SEDs are fitted by type 1 and type 2 AGN templates, respectively. On average, AGN1s show soft X-ray spectra, consistent with being unabsorbed, while AGN2s and SFs show hard X-ray spectra, consistent with being absorbed. The analysis of the average SEDs as a function of X-ray luminosity shows a reddening of the IR SEDs, consistent with a decreasing contribution from the host galaxy at higher luminosities. The AGNs in the SF classes are likely obscured in the mid-infrared, as suggested by their low L(3-20micron)/Lcorr(0.5-10 keV) ratios. We confirm the previously found correlation for AGNs between the radio luminosity and the X-ray and the mid-infrared luminosities. The X-ray-radio correlation can be used to identify heavily absorbed AGNs. However, the estimated radio fluxes for the missing AGN population responsible for the bulk of the background at E>10 keV are too faint to be detected even in the deepest current radio surveys.



rate research

Read More

We present a sample of 10 low-mass active galactic nuclei (AGNs) selected from the 40-month NuSTAR serendipitous survey. The sample is selected to have robust NuSTAR detections at $3 - 24$~keV, to be at $z < 0.3$, and to have optical r-band magnitudes at least 0.5~mag fainter than an $L_star$ galaxy at its redshift. The median values of absolute magnitude, stellar mass and 2--10 X-ray luminosity of our sample are $langle M_rrangle = -20.03$, $langle M_starrangle = 4.6times10^{9}M_odot$, and $langle L_{2-10mathrm{keV}}rangle = 3.1times10^{42}$ erg s$^{-1}$, respectively. Five objects have detectable broad H$alpha$ emission in their optical spectra, indicating black-hole masses of $(1.1-10.4)times 10^6 M_odot$. We find that $30^{+17}_{-10}%$ of the galaxies in our sample do not show AGN-like optical narrow emission lines, and one of the ten galaxies in our sample, J115851+4243.2, shows evidence for heavy X-ray absorption. This result implies that a non-negligible fraction of low-mass galaxies might harbor accreting massive black holes that are missed by optical spectroscopic surveys and $<10$ keV X-ray surveys. The mid-IR colors of our sample also indicate these optically normal low-mass AGNs cannot be efficiently identified with typical AGN selection criteria based on WISE colors. While the hard ($>10$ keV) X-ray selected low-mass AGN sample size is still limited, our results show that sensitive NuSTAR observations are capable of probing faint hard X-ray emission originating from the nuclei of low-mass galaxies out to moderate redshift ($z<0.3$), thus providing a critical step in understanding AGN demographics in low-mass galaxies.
We present near-IR photometry and imaging observations of a small sample of sources identified in the BeppoSAX 5-10 keV survey (HELLAS) which resolves ~ 20-30% of the X-ray background at these energies. The near-IR data are combined with optical spectra and photometry. Only 40% of the sources in our sample have the blue, power law continuum typical of color-selected QSOs. The remaining 60% are dominated by a galactic component which, on the basis of the continuum colors and shape, have ages ranging from 10^9 to 10^10 years. The images show that the blue QSOs are pointlike at our angular resolution, while all the other sources are extended, consistent with their spectral appearance and low redshift. Since down to R=20 only about two thirds of the HELLAS sources have a counterpart, the preliminary HELLAS census comprises in roughly equal parts: i) blue QSOs (mostly at high redshifts); ii) optically dim, galaxy-dominated active nuclei (mostly at modest redshifts); and iii) empty fields (possibly highly absorbed QSOs at high redshifts).
We investigate infrared colours and spectral energy distributions (SEDs) of 338 X-ray selected AGN from Swift-BAT 105-month survey catalogue that have AKARI detection, in order to find a new selection criteria for Compton-thick AGN. By combining data from Galaxy Evolution Explore (GALEX), Sloan Digital Sky Survey (SDSS) Data Release 14 (DR14), Two Micron All Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), AKARI and Herschel for the first time we perform ultraviolet (UV) to far-infrared (FIR) SED fitting 158 Swift BAT AGN by CIGALE and constrain the AGN model parameters of obscured and Compton-thick AGN. The comparison of average SEDs show while the mid-IR (MIR) SEDs are similar for the three AGN populations, optical/UV and FIR regions have differences. We measure the dust luminosity, the pure AGN luminosity and the total infrared (IR) luminosity. We examine the relationships between the measured infrared luminosities and the hard X-ray luminosity in the 14-195 keV band. We show that the average covering factor of Compton-thick AGN is higher compared to the obscured and unobscured AGN. We present a new infrared selection for Compton-thick AGN based on MIR and FIR colours ([9$mu$m - 22$mu$m]$ > 3.0$ and [22$mu$m - 90$mu$m]$ < 2.7$) from WISE and AKARI. We find two known Compton-thick AGN that are not included in the Swift-BAT sample, and conclude that MIR colours covering 9.7$mu$m silicate absorption and MIR continuum can be a promising new tool to identify Compton-thick AGN.
We investigate the X-ray variability characteristics of hard X-ray selected AGNs (based on Swift/BAT data) in the soft X-ray band using the RXTE/ASM data. The uncertainties involved in the individual dwell measurements of ASM are critically examined and a method is developed to combine a large number of dwells with appropriate error propagation to derive long duration flux measurements (greater than 10 days). We also provide a general prescription to estimate the errors in variability derived from rms values from unequally spaced data. Though the derived variability for individual sources are not of very high significance, we find that, in general, the soft X-ray variability is higher than those in hard X-rays and the variability strengths decrease with energy for the diverse classes of AGN. We also examine the strength of variability as a function of the break time scale in the power density spectrum (derived from the estimated mass and bolometric luminosity of the sources) and find that the data are consistent with the idea of higher variability at time scales longer than the break time scale.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we chose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا