Do you want to publish a course? Click here

GRB 060714: No Clear Dividing Line Between Prompt Emission and X-ray Flares

108   0   0.0 ( 0 )
 Added by Hans Krimm
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning ~70 s after the burst trigger T0 and continuing until T0 + ~200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. We show that the flares in GRB 060714 cannot be the result of internal shocks in which the contrast in the Lorentz factor of the colliding shells is very small, and that this mechanism faces serious difficulties in most Swift GRBs. The morphological similarity of the flares and the prompt emission and the gradual and continual evolution of the flares with time makes it difficult and arbitrary to draw a dividing line between the prompt emission and the flares.



rate research

Read More

From a sample of GRBs detected by the $Fermi$ and $Swift$ missions, we have extracted the minimum variability time scales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variability time scale with pulse parameters such as rise times,determined via pulse-fitting procedures, and spectral lags, extracted via the cross-correlation function (CCF), indicate a tight correlation between these temporal features for both the X-ray flares and the prompt emission. These correlations suggests a common origin for the production of X-ray flares and the prompt emission in GRBs.
We use a wavelet technique to investigate the time variations in the light curves from a sample of GRBs detected by Fermi and Swift. We focus primarily on the behavior of the flaring region of Swift-XRT light curves in order to explore connections between variability time scales and pulse parameters (such as rise and decay times, widths, strengths, and separation distributions) and spectral lags. Tight correlations between some of these temporal features suggest a common origin for the production of X-ray flares and the prompt emission.
We performed the first systematic search for the minimum variability time scale between 0.3 and 10 keV studying the 28 brightest early (<3000 s) afterglows detected by Swift-XRT up to March 2008. We adopt the power spectrum analysis in the time domain: unlike the Fourier spectrum, this is suitable to study the rms variations at different time-scales. We find that early XRT afterglows show variability in excess of the Poissonian noise level on time-scales as short as about 1 s (rest frame value), with the shortest t_{min} associated with the highest energy band. The gamma-ray prompt emission of GRB080319B shows a characteristic average variability time-scale t_{var} of about 1s; this parameter undergoes a remarkable evolution during the prompt emission (BAT observation).
We analyze GRB 151027A within the binary-driven hypernova (BdHN) approach, with progenitor a carbon-oxygen core on the verge of a supernova (SN) explosion and a binary companion neutron star (NS). The hypercritical accretion of the SN ejecta onto the NS leads to its gravitational collapse into a black hole (BH), to the emission of the GRB and to a copious $e^+e^-$ plasma. The impact of this $e^+e^-$ plasma on the SN ejecta explains {the} early soft X-ray flare observed in long GRBs. We here apply this approach to the UPE and to the hard X-ray flares. We use GRB 151027A as a prototype. From the time-integrated and the time-resolved analysis we identify a double component in the UPE and confirm its ultra-relativistic nature. We confirm the mildly-relativistic nature of the soft X-ray flare, of the hard X-ray flare and of the ETE. We show that the ETE identifies the transition from a SN to the HN. We then address the theoretical justification of these observations by integrating the hydrodynamical propagation equations of the $e^+ e^-$ into the SN ejecta, the latter independently obtained from 3D smoothed-particle-hydrodynamics simulations. We conclude that the UPE, the hard X-ray flare and the soft X-ray flare do not form a causally connected sequence: Within our model they are the manifestation of textbf{the same} physical process of the BH formation as seen through different viewing angles, implied by the morphology and the $sim 300$~s rotation period of the HN ejecta.
The Swift X-ray Telescope (XRT) has discovered that flares are quite common in early X-ray afterglows of Gamma-Ray Bursts (GRBs), being observed in roughly 50% of afterglows with prompt followup observations. The flares range in fluence from a few percent to ~ 100% of the fluence of the prompt emission (the GRB). Repetitive flares are seen, with more than 4 successive flares detected by the XRT in some afterglows. The rise and fall times of the flares are typically considerably smaller than the time since the burst. These characteristics suggest that the flares are related to the prompt emission mechanism, but at lower photon energies. We conclude that the most likely cause of these flares is late-time activity of the GRB central engine.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا