We describe IRAC 3.6-8 mu_m observations and ground-based near-IR JHKs photometry from Mimir and 2MASS of the massive double cluster h & chi Persei complete to J=15.5 (M ~ 1.3 Msun. Within 25 of the cluster centers we detect ~11,000 sources with J < 15.5, ~7,000 sources with [4.5] < 15, and ~ 5000 sources with [8] < 14.5. In both clusters, the surface density profiles derived from the 2MASS data decline with distance from the cluster centers as expected for a bound cluster. Within 15 of the cluster centers, ~ 50% of the stars lie on a reddened ~ 13 Myr isochrone; at 15-25 from the cluster centers, ~ 40% lie on this isochrone. Thus, the optical/2MASS color-magnitude diagrams indicate that h & chi Per are accompanied by a halo population with roughly the same age and distance as the two dense clusters. The double cluster lacks any clear IR excess sources for J < 13.5 (~ 2.7 Msun). Therefore, disks around high-mass stars disperse prior to ~ 10^{7} yr. At least 2-3% of the fainter cluster stars have strong IR excess at both [5.8] and [8]. About 4-8% of sources slightly more massive than the Sun (~ 1.4 Msun) have IR excesses at [8]. Combined with the lack of detectable excesses for brighter stars, this result suggests that disks around lower-mass stars have longer lifetimes. The IR excess population also appears to be larger at longer IRAC bands ([5.8], [8]) than at shorter IRAC/2MASS bands ($K_{s}$, [4.5]), a result consistent with an inside-out clearing of disks.