No Arabic abstract
We have conducted J, H, and Ks imaging observations for the Coalsack Globule 2 with the SIRIUS infrared camera on the IRSF 1.4 m telescope at SAAO, and determined the color excess ratio, E(J-H)/E(H-Ks). The ratio is determined in the same photometric system as our previous study for the rho Oph and Cha clouds without any color transformation; this enables us to directly compare the near-infrared extinction laws among these regions. The current ratio E(J-H)/E(H-Ks) = 1.91 +- 0.01 for the extinction range 0.5 < E(J-H) <1.8 is significantly larger than the ratios for the rho Oph and Cha clouds (E(J-H)/E(H-Ks) = 1.60-1.69). This ratio corresponds to a large negative index alpha = 2.34 +- 0.01 when the wavelength dependence of extinction is approximated by a power law which might indicate little growth of dust grains, or larger abundance of dielectric non-absorbing components such as silicates, or both in this cloud. We also confirm that the color excess ratio for the Coalsack Globule 2 has a trend of increasing with decreasing optical depth, which is the same trend as the rho Oph and Cha clouds have.
We determine the slope of the near infrared extinction power law (A$_{lambda} propto lambda^{-alpha}$) for 8 regions of the Galaxy between l$sim27^{circ}$ and $sim100^{circ}$. UKIDSS Galactic Plane Survey data are compared, in colour-colour space, with Galactic population synthesis model data reddened using a series of power laws and convolved through the UKIDSS filter profiles. Monte Carlo simulations allow us to determine the best fit value of $alpha$ and evaluate the uncertainty. All values are consistent with each other giving an average extinction power law of $alpha$=2.14$^{+0.04}_{-0.05}$. This is much steeper than most laws previously derived in the literature from colour excess ratios, which are typically between 1.6 and 1.8. We show that this discrepancy is due to an inappropriate choice of filter wavelength in conversion from colour excess ratios to $alpha$ and that effective rather than isophotal wavelengths are more appropriate. In addition, curved reddening tracks, which depend on spectral type and filter system, should be used instead of straight vectors.
A precise extinction law is a critical input when interpreting observations of highly reddened sources such as young star clusters and the Galactic Center (GC). We use Hubble Space Telescope observations of a region of moderate extinction and a region of high extinction to measure the optical and near-infrared extinction law (0.8 $mu$m -- 2.2 $mu$m). The moderate extinction region is the young massive cluster Westerlund 1 (Wd1; A$_{Ks} sim$ 0.6 mag), where 453 proper motion-selected main-sequence stars are used to measure the shape of the extinction law. To quantify the shape we define the parameter $mathcal{S}_{1/lambda}$, which behaves similarly to a color excess ratio but is continuous as a function of wavelength. The high extinction region is the GC (A$_{Ks} sim$ 2.5 mag), where 819 red clump stars are used to determine the normalization of the law. The best-fit extinction law is able to reproduce the Wd1 main sequence colors, which previous laws misestimate by 10%-30%. The law is inconsistent with a single power law, even when only the near-infrared filters are considered, and has A$_{F125W}$/A$_{Ks}$ and A$_{F814W}$/A$_{Ks}$ values that are 18% and 24% larger than the commonly used citet{Nishiyama:2009fc} law, respectively. Using the law we recalculate the Wd1 distance to be 3896 $pm$ 328 pc from published observations of eclipsing binary W13. This new extinction law should be used for highly reddened populations in the Milky Way, such as the Quintuplet cluster and Young Nuclear Cluster. A python code is provided to generate the law for future use.
Several methods exist to convert near-infrared (NIR) stellar observations into extinction maps. We present a new method based on NIR multiband observations. The method uses a discretised version of the distribution of intrinsic stellar colours. A number of variations of the basic method are tested, and the results are compared to NICER calculations. When photometric errors are large, the results are close to those of NICER method but some advantages can be seen when the distribution of intrinsic colours cannot be described well with a single covariance matrix. A priori information about relative column density variations at sub-beam scales can result in a significant increase in accuracy. The results may be further improved by considering the magnitude dependence of the intrinsic colours. Thus, the new methods are useful mostly when photometric errors are small, the distribution of intrinsic colours is well known, or one has prior knowledge of the small-scale structures.
Due to the extreme extinction towards the Galactic centre ($A_{V} sim 30$ mag), its stellar population is mainly studied in the near-infrared (NIR) regime. Therefore, a proper analysis of the NIR extinction curve is necessary to fully characterise the stellar structure and population of the inner part of the galaxy. We studied the dependence of the extinction index ($alpha_lambda$) in the NIR on the line of sight, wavelength, and extinction. We used the GALACTICNUCLEUS imaging survey, a high angular resolution catalogue ($0.2$) for the inner part of the Galaxy in $JHK_s$, and studied the spatial variation in the extinction index. We also applied two independent methods based on red clump stars to compute the extinction index between different bands and its variation with wavelength. We did not detect any significant line-of-sight or extinction variation in $alpha$ within the studied region in the nuclear stellar disc. The extinction index between $JH$ and $HK_s$ differs by $0.19 pm 0.05$. We obtained mean values for the extinction indices $alpha_{JH} = 2.43pm0.03$ and $alpha_{HK_s} = 2.23pm0.03$. The dependence of the extinction index on the wavelength could explain the differences obtained for $alpha_lambda$ in the literature since it was assumed constant for the NIR regime.
We present the results of extinction measurements toward the main ejecta shell of the Cassiopeia A supernova (SN) remnant using the flux ratios between the two near-infrared (NIR) [Fe II] lines at 1.26 and 1.64 $mu {rm m}$. We find a clear correlation between the NIR extinction ($E(J-H)$) and the radial velocity of ejecta knots, showing that redshifted knots are systematically more obscured than blueshifted ones. This internal self-extinction strongly indicates that a large amount of SN dust resides inside and around the main ejecta shell. At one location in the southern part of the shell, we measure $E(J-H)$ by the SN dust of 0.23$pm$0.05 mag. By analyzing the spectral energy distribution of thermal dust emission at that location, we show that there are warm ($sim$100 K) and cool ($sim$40 K) SN dust components and that the latter is responsible for the observed $E(J-H)$. We investigate the possible grain species and size of each component and find that the warm SN dust needs to be silicate grains such as MgSiO$_{3}$, Mg$_{2}$SiO$_{4}$, and SiO$_{2}$, whereas the cool dust could be either small ($leq$0.01 $mu {rm m}$) Fe or large ($geq$0.1 $mu {rm m}$) Si grains. We suggest that the warm and cool dust components in Cassiopeia A represent grain species produced in diffuse SN ejecta and in dense ejecta clumps, respectively.