Do you want to publish a course? Click here

Damp Mergers: Recent Gaseous Mergers without Significant Globular Cluster Formation?

67   0   0.0 ( 0 )
 Added by Duncan Forbes
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we test the idea that new globular clusters (GCs) are formed in the same gaseous (wet) mergers or interactions that give rise to the young stellar populations seen in the central regions of many early-type galaxies. We compare mean GC colors with the age of the central galaxy starburst. The red GC subpopulation reveals remarkably constant mean colors independent of galaxy age. A scenario in which the red GC subpopulation is a combination of old and new GCs (formed in the same event as the central galaxy starburst) can not be ruled out; although this would require an age-metallicity relation for the newly formed GCs that is steeper than the Galactic relation. However, the data are also well described by a scenario in which most red GCs are old, and few, if any, are formed in recent gaseous mergers. This is consistent with the old ages inferred from some spectroscopic studies of GCs in external systems. The event that induced the central galaxy starburst may have therefore involved insufficient gas mass for significant GC formation. We term such gas-poor events damp mergers.



rate research

Read More

Mergers of gas-rich galaxies lead to gravitationally driven increases in gas pressure that can trigger intense bursts of star and cluster formation. Although star formation itself is clustered, most newborn stellar aggregates are unbound associations and disperse. Gravitationally bound star clusters that survive for at least 10-20 internal crossing times (~20-40 Myr) are relatively rare and seem to contain <10% of all stars formed in the starbursts. The most massive young globular clusters formed in present-day mergers exceed omega Cen by an order of magnitude in mass, yet appear to have normal stellar initial mass functions. In the local universe, recent remnants of major gas-rich disk mergers appear as protoelliptical galaxies with subpopulations of typically 100-1000 young metal-rich globular clusters in their halos. The evidence is now strong that these second-generation globular clusters formed from giant molecular clouds in the merging disks, squeezed into collapse by large-scale shocks and high gas pressure rather than by high-velocity cloud-cloud collisions. Similarly, first- generation metal-poor globular clusters may have formed during cosmological reionization from low-metallicity giant molecular clouds squeezed by the universal reionization pressure.
Our numerical simulations first demonstrate that the pressure of ISM in a major merger becomes so high ($>$ $10^5$ $rm k_{rm B}$ K $rm cm^{-3}$) that GMCs in the merger can collapse to form globular clusters (GCs) within a few Myr. The star formation efficiency within a GMC in galaxy mergers can rise up from a few percent to $sim$ 80 percent, depending on the shapes and the temperature of the GMC. This implosive GC formation due to external high pressure of warm/hot ISM can be more efficient in the tidal tails or the central regions of mergers. The developed clusters have King-like profile with the effective radius of a few pc. The structural, kinematical, and chemical properties of these GC systems can depend on orbital and chemical properties of major mergers.
This study explored the GALEX ultraviolet (UV) properties of optical red sequence galaxies in 4 rich Abell clusters at z leq 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the NUV - r colors of the galaxies, RSF fractions were derived based on various criteria for post-merger galaxies and normal galaxies. Following k-correction, about 36% of the post-merger galaxies were classified as RSF galaxies with a conservative criterion (NUV - r leq 5), and that number was doubled (~ 72%) when using a generous criterion (NUV - r leq 5.4). The trend was the same when we restricted the sample to galaxies within 0.5xR_{200}. Post-merger galaxies with strong UV emission showed more violent, asymmetric features in the deep optical images. The RSF fractions did not show any trend along the clustocentric distance within R_{200}. We performed a Dressler-Shectman test to check whether the RSF galaxies had any correlation with the sub-structures in the galaxy clusters. Within R_{200} of each cluster, the RSF galaxies did not appear to be preferentially related to the clusters sub-structures. Our results suggested that only 30% of RSF red sequence galaxies show morphological hints of recent galaxy mergers. This implies that internal processes (e.g., stellar mass-loss or hot gas cooling) for the supply of cold gas to early-type galaxies may play a significant role in the residual star formation of early-type galaxies at a recent epoch.
We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post merger galaxies. We determine the stellar mass functions of the stages that we would expect major merger quenched galaxies to pass through on their way from the blue cloud to the red sequence: 1: major merger, 2: post merger, 3: blue early type, 4: green early type and 5: red early type. Based on the similar mass function shapes we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major merger fraction increases as a function of stellar mass. Major merger quenching is inconsistent with the mass and environment quenching model. At z~0 major merger quenched galaxies are unlikely to constitute the majority of galaxies that transition the green valley. Furthermore, between z~0-0.5 major merger quenched galaxies account for 1-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z~0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism which causes a slow blue to red evolution.
82 - Johan Samsing 2017
We derive the probability for a newly formed binary black hole (BBH) to undergo an eccentric gravitational wave (GW) merger during binary-single interactions inside a stellar cluster. By integrating over the hardening interactions such a BBH must undergo before ejection, we find that the observable rate of BBH mergers with eccentricity $>0.1$ at $10 rm{Hz}$ relative to the rate of circular mergers can be as high as $sim 5%$ for a typical globular cluster (GC). This further suggests that BBH mergers forming through GW captures in binary-single interactions, eccentric or not, are likely to constitute $sim 10%$ of the total BBH merger rate from GCs. Such GW capture mergers can only be probed with an $N$-body code that includes General Relativistic corrections, which explains why recent Newtonian cluster studies not have been able to resolve this population. Finally, we show that the relative rate of eccentric BBH mergers depends on the compactness of their host cluster, suggesting that an observed eccentricity distribution can be used to probe the origin of BBH mergers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا