Do you want to publish a course? Click here

The Luminosity Function and Star Formation Rate between Redshifts of 0.07 and 1.47 for Narrow-band Emitters in the Subaru Deep Field

47   0   0.0 ( 0 )
 Added by Chun Ly
 Publication date 2006
  fields Physics
and research's language is English
 Authors Chun Ly




Ask ChatGPT about the research

Abridged: Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple NB filters are used to distinguish Ha, [O II], and [O III] emitters between redshifts of 0.07 and 1.47 to construct their luminosity functions (LFs). These LFs are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N~200-900) sample for each redshift interval, a Schechter profile is fitted to each LF. Prior to dust extinction corrections, the [O III] and [O II] LFs reported in this paper agree reasonably well with those of Hippelein et al. The z=0.08 Ha LF, which reaches two orders of magnitude fainter than Gallego et al., is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1. The faint end slope alpha and phi_{star} show a strong evolution with redshift while L_{star} show little evolution. The evolution in alpha indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Ha, [O III], and [O II] for 0.07<z<1.47. A steep increase in the star-formation rate density, as a function of redshift, is seen for 0.4<z<0.9. For z>1, the star-formation rate densities are more or less constant. The latter is consistent with previous UV and [O II] measurements. Below z<0.4, the SFR densities are consistent with several Ha, [O II], and UV measurements, but other measurements are a factor of two higher. For example, the z=0.066-0.092 Ha LF agrees with those of Jones & Bland-Hawthorn, but at z=0.24 and 0.40, their number density is higher by a factor of two. This discrepancy can be explained by cosmic variance.



rate research

Read More

We have carried out a wide-field imaging survey for [OII]3727 emitting galaxies at z~1.2 in the HST COSMOS 2 square degree field using the Suprime-Cam on the Subaru Telescope. The survey covers a sky area of 6700 arcmin^2 in the COSMOS field, and a redshift range between 1.17 and 1.20 (Delta_z = 0.03), corresponding to a survey volume of 5.56*10^5 Mpc^3. We obtain a sample of 3176 [OII] emitting galaxies with observed emission-line equivalent widths greater than 26 AA. Since our survey tends to sample brighter [OII]3727 emitting galaxies, we also analyze a sample of fainter [OII]3727 emitting galaxies found in the Subaru Deep Field (SDF). We find an extinction-corrected [OII] luminosity density of 10^{40.35^+0.08_-0.06} ergs s^-1 Mpc-3, corresponding to star formation rate density of 0.32^+0.06_-0.04 M_sun yr-1 Mpc^-3 in the COSMOS field at z~1.2. This is the largest survey for [OII]3727 emitters beyond z=1 currently available.
We conducted a deep narrowband NB973 (FWHM = 200 A centered at 9755 A) survey of z=7 Lyman alpha emitters (LAEs) in the Subaru/XMM-Newton Deep Survey Field, using the fully depleted CCDs newly installed on the Subaru Telescope Suprime-Cam, which is twice more sensitive to z=7 Lyman alpha at ~ 1 micron than the previous CCDs. Reaching the depth 0.5 magnitude deeper than our previous survey in the Subaru Deep Field that led to the discovery of a z=6.96 LAE, we detected three probable z=7 LAE candidates. Even if all the candidates are real, the Lyman alpha luminosity function (LF) at z=7 shows a significant deficit from the LF at z=5.7 determined by previous surveys. The LAE number and Lyman alpha luminosity densities at z=7 is ~ 7.7-54% and ~5.5-39% of those at z=5.7 to the Lyman alpha line luminosity limit of L(Ly-alpha) >~ 9.2 x 10^{42} erg s^{-1}. This could be due to evolution of the LAE population at these epochs as a recent galaxy evolution model predicts that the LAE modestly evolves from z=5.7 to 7. However, even after correcting for this effect of galaxy evolution on the decrease in LAE number density, the z=7 Lyman alpha LF still shows a deficit from z=5.7 LF. This might reflect the attenuation of Lyman alpha emission by neutral hydrogen remaining at the epoch of reionization and suggests that reionization of the universe might not be complete yet at z=7. If we attribute the density deficit to reionization, the intergalactic medium (IGM) transmission for Lyman alpha photons at z=7 would be 0.4 <= T_{Ly-alpha}^{IGM} <= 1, supporting the possible higher neutral fraction at the earlier epochs at z > 6 suggested by the previous surveys of z=5.7-7 LAEs, z ~ 6 quasars and z > 6 gamma-ray bursts.
We present estimates of the GALEX NUV and FUV luminosity functions (LFs) of the Coma cluster, over a total area of ~9 deg^2 (~25 Mpc^2), i.e. from the cluster center to the virial radius. Our analysis represents the widest and deepest UV investigation of a nearby cluster of galaxies made to date. The Coma UV LFs show a faint-end slope steeper than the one observed in the local field. This difference, more evident in NUV, is entirely due to the contribution of massive quiescent systems (e.g. ellipticals, lenticulars and passive spirals), more frequent in high density environments. On the contrary, the shape of the UV LFs for Coma star-forming galaxies does not appear to be significantly different from that of the field, consistently with previous studies of local and high redshift clusters. We demonstrate that such similarity is only a selection effect, not providing any information on the role of the environment on the star formation history of cluster galaxies. By integrating the UV LFs for star-forming galaxies (corrected for the first time for internal dust attenuation), we show that the specific star formation rate of Coma is significantly lower than the integrated SSFR of the field and that Coma-like clusters contribute only <7% of the total SFR density of the local universe. Approximately 2/3 of the whole star-formation in Coma is occurring in galaxies with M_star < 10^10 M_sol. The vast majority of star-forming galaxies has likely just started its first dive into the cluster core and has not yet been affected by the cluster environment. The total stellar mass accretion rate of Coma is ~(0.6-1.8) x 10^12 M_sol Gyr^-1, suggesting that a significant fraction of the population of lenticular and passive spirals observed today in Coma could originate from infalling galaxies accreted between z~1 and z~0.
We use ultraviolet imaging taken with the XMM-Newton Optical Monitor telescope (XMM-OM), covering 280 square arcminutes in the UVW1 band (effective wavelength 2910 Angstroms) to measure rest-frame ultraviolet (1500 Angstrom) luminosity functions of galaxies with redshifts z between 0.6 and 1.2. The XMM-OM data are supplemented by a large body of optical and infrared imaging to provide photometric redshifts. The XMM-OM data have a significantly narrower point-spread-function (resulting in less source confusion) and simpler K-correction than the GALEX data previously employed in this redshift range. Ultraviolet-bright active galactic nuclei are excluded to ensure that the luminosity functions relate directly to the star-forming galaxy population. Binned luminosity functions and parametric Schechter-function fits are derived in two redshift intervals: 0.6<z<0.8 and 0.8<z<1.2. We find that the luminosity function evolves such that the characteristic absolute magnitude M* is brighter for 0.8<z<1.2 than for 0.6<z<0.8.
136 - E. Ibar , D. Sobral , P.N. Best 2013
We describe the far-infrared (FIR; rest-frame 8--1000mu m) properties of a sample of 443 Halpha-selected star-forming galaxies in the COSMOS and UDS fields detected by the HiZELS imaging survey. Sources are identified using narrow-band filters in combination with broad-band photometry to uniformly select Halpha (and [OII] if available) emitters in a narrow redshift slice at z = 1.47+/-0.02. We use a stacking approach in Spitzer, Herschel (from PEP and HerMES surveys) and AzTEC images to describe their typical FIR properties. We find that HiZELS galaxies with observed Halpha luminosities of ~ 10^{8.1-9.1} Lo have bolometric FIR luminosities of typical LIRGs, L_FIR ~ 10^{11.48+/-0.05} Lo. Combining the Halpha and FIR luminosities, we derive median SFR = 32+/-5 Mo/yr and Halpha extinctions of A(Halpha) = 1.0+/-0.2 mag. Perhaps surprisingly, little difference is seen in typical HiZELS extinction levels compared to local star-forming galaxies. We confirm previous empirical stellar mass (M*) to A(Halpha) relations and the little or no evolution up to z = 1.47. For HiZELS galaxies, we provide an empirical parametrisation of the SFR as a function of (u-z)_rest colours and 3.6mu m photometry. We find that the observed Halpha luminosity is a dominant SFR tracer when (u-z)_rest ~< 0.9 mag or when 3.6mu m photometry > 22 mag (Vega) or when M* < 10^9.7 Mo. We do not find any correlation between the [OII]/Halpha and FIR luminosity, suggesting that this emission line ratio does not trace the extinction of the most obscured star-forming regions. The luminosity-limited HiZELS sample tends to lie above of the so-called `main sequence for star-forming galaxies, especially at low M*. This work suggests that obscured star formation is linked to the assembly of M*, with deeper potential wells in massive galaxies providing dense, heavily obscured environments in which stars can form rapidly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا