Do you want to publish a course? Click here

A collimated jet and an infalling-rotating disk in G192.16-3.84 traced by H2O maser emission

53   0   0.0 ( 0 )
 Added by Hiroshi Imai
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report H2O masers associated with the massive-star forming region G192.16-3.84 observed with the new Japan VLBI network at three epochs spanned for two months, which have revealed the three-dimensional kinematical structure of the whole h2o maser region in G192.16-3.84, containing two young stellar objects separated by ~1200 AU. The maser spatio-kinematical structure has well persisted since previous observations, in which the masers are expected to be associated with a highly-collimated bipolar jet and an infalling-rotating disk in the northern and southern clusters of H2O maser features, respectively. We estimated a jet expansion speed of ~100 km/s and re-estimated a dynamical age of the whole jet to be 5.6x10^4 yrs. We have investigated the spatial distribution of Doppler velocities during the previous and present observations and relative proper motions of H2O maser features in the southern cluster, and a relative bulk motion between the two maser clusters. They are well explained by a model of an infalling-rotating disk with a radius of ~1000 AU and a central stellar mass of 5-10 M_sun, rather than by a model of a bipolar jet perpendicular to the observed CO outflow. Based on the derived H2O maser spatio-kinematical parameters, we discuss the formation mechanism of the massive young stellar objects and the outflow development in G192.16-3.84.

rate research

Read More

We present the results of astrometic observations of H2O masers associated with the star forming region G192.16-3.84 with the VLBI Exploration of Radio Astrometry (VERA). The H2O masers seem to be associated with two young stellar objects (YSOs) separated by sim1200 AU as reported in previous observations. In the present observations, we successfully detected an annual parallax of 0.66 pm 0.04 mas for the H2 O masers, which corresponds to a distance to G192.16-3.84 of D = 1.52 pm 0.08 kpc from the Sun. The determined distance is shorter than the estimated kinematic distance. Using the annual parallax distance and the estimated parameters of the millimeter continuum emission, we estimate the mass of the disk plus circumstellar cloud in the southern young stellar object to be 10.0+4.3Mcdot. We also estimate the galactocentric distance and the peculiar motion -3.6 of G192.16-3.84, relative to a circular Galactic rotation: Rstar = 9.99 pm 0.08 kpc, Zstar = -0.10 pm 0.01 kpc, and (Ustar,Vstar,Wstar)=(-2.8pm1.0,-10.5pm0.3,4.9pm2.7)[kms-1]respectively. The peculiar motion of G192.16-3.84 is within that typically found in recent VLBI astrometric results. The angular distribution and three-dimensional velocity field of H2O maser features associated with the northern YSO indicate the existence of a bipolar outflow with a major axis along the northeast-southwest direction.
Previous observations have revealed an accretion disk and outflow motion in high-mass star-forming region G192.16-3.84. While collapse have not been reported before. We present here molecular line and continuum observations toward massive core G192.16-3.84 with the Submillimeter Array. C$^{18}$O(2-1) and HCO$^{+}$(3-2) lines show pronounced blue profiles, indicating gas infalling in this region. This is the first time that the infall motion has been reported in G192.16-3.84 core. Two-layer model fitting gave infall velocities of 2.0$pm$0.2 and 2.8$pm$0.1 km s$^{-1}$. Assuming that the cloud core follows a power-law density profile ($rho$$propto$$r^{1.5}$), the corresponding mass infall rates are (4.7$pm$1.7)$times10^{-3}$ and (6.6$pm$2.1)$times10^{-3}$ M$_{sun}$ yr$^{-1}$ for C$^{18}$O(2-1) and HCO$^{+}$(3-2), respectively. The derived infall rates are in agreement with the turbulent core model and those in other high-mass star-forming regions, suggesting that high accretion rate is a general requirement to form a massive star.
We present high resolution (R=24,000) L-band spectra of the young intermediate mass star V1331 Cyg obtained with NIRSPEC on the Keck II telescope. The spectra show strong, rich emission from water and OH that likely arises from the warm surface region of the circumstellar disk. We explore the use of the new BT2 (Barber et al. 2006) water line list in fitting the spectra, and we find that it does a much better job than the well-known HITRAN (Rothman et al. 1998) water line list in the observed wavelength range and for the warm temperatures probed by our data. By comparing the observed spectra with synthetic disk emission models, we find that the water and OH emission lines have similar widths (FWHM ~ 18 km s-1). If the line widths are set by disk rotation, the OH and water emission lines probe a similar range of disk radii in this source. The water and OH emission are consistent with thermal emission for both components at a temperature ~ 1500 K. The column densities of the emitting water and OH are large, ~ 10^{21} cm-2 and ~ 10^{20} cm-2, respectively. Such a high column density of water is more than adequate to shield the disk midplane from external UV irradiation in the event of complete dust settling out of the disk atmosphere, enabling chemical synthesis to continue in the midplane despite a harsh external UV environment. The large OH-to-water ratio is similar to expectations for UV irradiated disks (e.g., Bethell and Bergin 2009), although the large OH column density is less easily accounted for.
AA Tau, a classical T Tauri star in the Taurus cloud, has been the subject of intensive photometric monitoring for more than two decades due to its quasi-cyclic variation in optical brightness. Beginning in 2011, AA Tau showed another peculiar variation -- its median optical though near-IR flux dimmed significantly, a drop consistent with a 4-mag increase in visual extinction. It has stayed in the faint state since.Here we present 4.7um CO rovibrational spectra of AA Tau over eight epochs, covering an eleven-year time span, that reveal enhanced 12CO and 13CO absorption features in the $J_{rm low}leqslant$13 transitions after the dimming. These newly appeared absorptions require molecular gas along the line of sight with T~500 K and a column density of log (N12CO)~18.5 cm^{-2}, with line centers that show a constant 6 km s$^{-1}$ redshift. The properties of the molecular gas confirm an origin in the circumstellar material. We suggest that the dimming and absorption are caused by gas and dust lifted to large heights by a magnetic buoyancy instability. This material is now propagating inward, and on reaching the star within a few years will be observed as an accretion outburst.
129 - D.S. Shepherd 2004
We have observed the massive star forming region associated with the early B protostar G192.16-3.84 in NH3(1,1), 22.2 GHz water masers, 1.3 cm continuum emission, and at 850 microns. The dense gas associated with G192.16 is clumpy, optically thin, and has a mass of 0.9 Msun. The ammonia core is gravitationally unstable which may signal that the outflow phase of this system is coming to an end. Water masers trace an ionized jet 0.8 (1600 AU at a distance of 2 kpc) north of G192.16. Masers are also located within 500 AU of G192.16, their velocity distribution is consistent with but does not strongly support the interpretation that the maser emission arises in a 1000 AU rotating disk centered on G192.16. Roughly 30 south of G192.16 (0.3 pc) is a compact, optically thick (optical depth = 1.2) ammonia core (called G192 S3) with an estimated mass of 2.6 Msun. Based on the presence of 850 micron and 1.2 mm continuum emission, G192 S3 probably harbors a very young, low-mass protostar or proto-cluster. The dense gas in the G192 S3 core is likely to be gravitationally bound and may represent the next site of star formation in this region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا