Do you want to publish a course? Click here

A Search for Dense Gas in Luminous Submillimeter Galaxies with the 100-m Green Bank Telescope

133   0   0.0 ( 0 )
 Added by Thomas Greve
 Publication date 2006
  fields Physics
and research's language is English
 Authors T. R. Greve




Ask ChatGPT about the research

We report deep K-band (18-27GHz) observations with the 100-m Green Bank Telescope of HCN(1-0) line emission towards the two submillimeter-selected galaxies (SMGs) SMMJ02399-0136 (z=2.81) and SMMJ16359+6612 (z=2.52). For both sources we have obtained spectra with channel-to-channel rms noise of <=0.5mJy, resulting in velocity-integrated line fluxes better than < 0.1 Jy km/s, although we do not detect either source. Such sensitive observations -- aided by gravitational lensing of the sources -- permit us to put upper limits of L_HCN(1-0) < 2x10^10 K km/s pc^2 on the intrinsic HCN(1-0) line luminosities of the two SMGs. The far-infrared (FIR) luminosities for all three SMGs with sensitive HCN(1-0) observations to date are found to be consistent with the tight FIR-HCN luminosity correlation observed in Galactic molecular clouds, quiescent spirals and (ultra) luminous infrared galaxies in the local Universe. Thus, the observed HCN luminosities remain in accordance with what is expected from the universal star formation efficiency per dense molecular gas mass implied by the aforementioned correlation, and more sensitive observations with todays large aperture radio telescopes hold the promise of detecting HCN(1-0) emission in similar objects in the distant Universe.



rate research

Read More

Neutral Hydrogen (HI) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We the first attempt to use gravitational lensing to detect HI line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshift of 0.398 and one at z=0.487, using the Green Bank Telescope. We find a 3 sigma upper limit for a galaxy with a rotation velocity of 200 km/s is M_HI=6.58x10^9 and 1.5x10^10 M_solar at z=0.398 and z=0.487. The estimated HI masses of the sources at z=0.398 and z=0.487 are a factor of 3.7 and ~30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma clipping to remove both narrow- and wide-band RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ~25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ~10 of the integrations or fewer contains RFI. These techniques can be used to study HI in highly magnified distant galaxies that are otherwise too faint to detect.
115 - A.I. Harris 2010
We report detections of three z ~ 2.5 submillimeter-selected galaxies (SMGs; SMM J14011+0252, SMM J14009+0252, SMM J04431+0210) in the lowest rotational transition of the carbon monoxide molecule (CO J = 1-0) and one nondetection (SMM J04433+0210). For the three galaxies we detected, we find a line-integrated brightness temperature ratio of the J = 3-2 and 1-0 lines of 0.68 +/- 0.08; the 1-0 line is stronger than predicted by the frequent assumption of equal brightnesses in the two lines and by most single-component models. The observed ratio suggests that mass estimates for SMGs based on J = 3-2 observations and J = 1-0 column density or mass conversion factors are low by a factor of 1.5. Comparison of the 1-0 line intensities with intensities of higher-J transitions indicates that single-component models for the interstellar media in SMGs are incomplete. The small dispersion in the ratio, along with published detections of CO lines with J_upper > 3 in most of the sources, indicates that the emission is from multi-component interstellar media with physical structures common to many classes of galaxies. This result tends to rule out the lowest scaling factors between CO luminosity and molecular gas mass, and further increases molecular mass estimates calibrated against observations of galaxies in the local universe. We also describe and demonstrate a statistically sound method for finding weak lines in broadband spectra that will find application in searches for molecular lines from sources at unknown redshifts.
We describe GBTrans, a real-time search system designed to find fast radio bursts (FRBs) using the 20-m radio telescope at the Green Bank Observatory. The telescope has been part of the Skynet educational program since 2015. We give details of the observing system and report on the non-detection of FRBs from a total observing time of 503 days. Single pulses from four known pulsars were detected as part of the commensal observing. The system is sensitive enough to detect approximately half of all currently known FRBs and we estimate that our survey probed redshifts out to about 0.3 corresponding to an effective survey volume of around 124,000~Mpc$^3$. Modeling the FRB rate as a function of fluence, $F$, as a power law with $F^{-alpha}$, we constrain the index $alpha < 2.5$ at the 90% confidence level. We discuss the implications of this result in the context of constraints from other FRB surveys.
The Green Bank Telescope (GBT) is the largest fully steerable radio telescope in the world and is one of our greatest tools for discovering and studying radio pulsars. Over the last decade, the GBT has successfully found over 100 new pulsars through large-area surveys. Here I discuss the two most recent---the GBT 350 MHz Drift-scan survey and the Green Bank North Celestial Cap survey. The primary science goal of both surveys is to find interesting individual pulsars, including young pulsars, rotating radio transients, exotic binary systems, and especially bright millisecond pulsars (MSPs) suitable for inclusion in Pulsar Timing Arrays, which are trying to directly detect gravitational waves. These two surveys have combined to discover 85 pulsars to date, among which are 14 MSPs and many unique and fascinating systems. I present highlights from these surveys and discuss future plans. I also discuss recent results from targeted GBT pulsar searches of globular clusters and Fermi sources.
We describe the design and deployment of GREENBURST, a commensal Fast Radio Burst (FRB) search system at the Green Bank Telescope. GREENBURST uses the dedicated L-band receiver tap to search over the 960$-$1920 MHz frequency range for pulses with dispersion measures out to $10^4$ pc cm$^{-3}$. Due to its unique design, GREENBURST will obtain data even when the L-band receiver is not being used for scheduled observing. This makes it a sensitive single pixel detector capable of reaching deeper in the radio sky. While single pulses from Galactic pulsars and rotating radio transients will be detectable in our observations, and will form part of the database we archive, the primary goal is to detect and study FRBs. Based on recent determinations of the all-sky rate, we predict that the system will detect approximately one FRB for every 2$-$3 months of continuous operation. The high sensitivity of GREENBURST means that it will also be able to probe the slope of the FRB source function, which is currently uncertain in this observing band.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا