Do you want to publish a course? Click here

First Detection of NaI D lines in High-Redshift Damped Lyman-alpha Systems

137   0   0.0 ( 0 )
 Added by Sohei Kondo
 Publication date 2006
  fields Physics
and research's language is English
 Authors Sohei Kondo




Ask ChatGPT about the research

A Near-infrared (1.18-1.35 micron) high-resolution spectrum of the gravitationally-lensed QSO APM 08279+5255 was obtained with the IRCS mounted on the Subaru Telescope using the AO system. We detected strong NaI D 5891,5897 doublet absorption in high-redshift DLAs at z=1.062 and 1.181, confirming the presence of NaI, which was first reported for the rest-frame UV NaI 3303.3,3303.9 doublet by Petitjean et al. This is the first detection of NaI D absorption in a high-redshift (z>1) DLA. In addition, we detected a new NaI component in the z=1.062 DLA and four new components in the z=1.181 DLA. Using an empirical relationship between NaI and HI column density, we found that all components have large HI column density, so that each component is classified as DLA absorption. We also detected strong NaI D absorption associated with a MgII system at z=1.173. Because no other metal absorption lines were detected in this system at the velocity of the NaI absorption in previously reported optical spectra (observed 3.6 years ago), we interpret this NaI absorption cloud probably appeared in the line of sight toward the QSO after the optical observation. This newly found cloud is likely to be a DLA based upon its large estimated HI column density. We found that the N(NaI)/N(CaII) ratios in these DLAs are systematically smaller than those observed in the Galaxy; they are more consistent with the ratios seen in the Large Magellanic Cloud. This is consistent with dust depletion generally being smaller in lower metallicity environments. However, all five clouds of the z=1.181 system have a high N(NaI)/N(CaII) ratio, which is characteristic of cold dense gas. We tentatively suggest that the host galaxy of this system may be the most significant contributor to the gravitational-lens toward APM 08279+5255.



rate research

Read More

168 - N. Kanekar 2009
We have used the Very Long Baseline Array to image 18 quasars with foreground damped Lyman-$alpha$ systems (DLAs) at 327, 610 or 1420 MHz, to measure the covering factor $f$ of each DLA at or near its redshifted HI 21cm line frequency. Including six systems from the literature, we find that none of 24 DLAs at $0.09 < z < 3.45$ has an exceptionally low covering factor, with $f sim 0.45 - 1$ for the 14 DLAs at $z > 1.5$, $f sim 0.41 - 1$ for the 10 systems at $z < 1$, and consistent covering factor distributions in the two sub-samples. The observed paucity of detections of HI 21cm absorption in high-$z$ DLAs thus cannot be explained by low covering factors and is instead likely to arise due to a larger fraction of warm HI in these absorbers.
202 - N. Kanekar 2013
We report results from a programme aimed at investigating the temperature of neutral gas in high-redshift damped Lyman-$alpha$ absorbers (DLAs). This involved (1) HI 21cm absorption studies of a large DLA sample, (2) VLBI studies to measure the low-frequency quasar core fractions, and (3) optical/ultraviolet spectroscopy to determine DLA metallicities and velocity widths. Including literature data, our sample consists of 37 DLAs with estimates of the spin temperature $T_s$ and the covering factor. We find a strong $4sigma$) difference between the $T_s$ distributions in high-z (z>2.4) and low-z (z<2.4) DLA samples. The high-z sample contains more systems with high $T_s$ values, $gtrsim 1000$ K. The $T_s$ distributions in DLAs and the Galaxy are also clearly (~$6sigma$) different, with more high-$T_s$ sightlines in DLAs than in the Milky Way. The high $T_s$ values in the high-z DLAs of our sample arise due to low fractions of the cold neutral medium. For 29 DLAs with metallicity [Z/H] estimates, we confirm the presence of an anti-correlation between $T_s$ and [Z/H], at $3.5sigma$ significance via a non-parametric Kendall-tau test. This result was obtained with the assumption that the DLA covering factor is equal to the core fraction. Monte Carlo simulations show that the significance of the result is only marginally decreased if the covering factor and the core fraction are uncorrelated, or if there is a random error in the inferred covering factor. We also find evidence for redshift evolution in DLA $T_s$ values even for the z>1 sub-sample. Since z>1 DLAs have angular diameter distances comparable to or larger than those of the background quasars, they have similar efficiency in covering the quasars. Low covering factors in high-z DLAs thus cannot account for the observed redshift evolution in spin temperatures. (Abstract abridged.)
We have obtained high signal:to:noise optical spectroscopy at 5AA resolution of 27 quasars from the APM z$>$4 quasar survey. The spectra have been analyzed to create new samples of high redshift Lyman-limit and damped Lyman-$alpha$ absorbers. These data have been combined with published data sets in a study of the redshift evolution and the column density distribution function for absorbers with $log$N(HI)$ge17.5$, over the redshift range 0.01 $<$ z $<$ 5. The main results are: begin{itemize} item Lyman limit systems: The data are well fit by a power law $N(z) = N_0(1 + z)^{gamma}$ for the number density per unit redshift. For the first time intrinsic evolution is detected in the product of the absorption cross-section and comoving spatial number density for an $Omega = 1$ Universe. We find $gamma = 1.55$ ($gamma = 0.5$ for no evolution) and $N_0 = 0.27$ with $>$99.7% confidence limits for $gamma$ of 0.82 & 2.37. item Damped lya systems: The APM QSOs provide a substantial increase in the redshift path available for damped surveys for $z>3$. Eleven candidate and three confirmed damped Ly$alpha$ absorption systems, have been identified in the APM QSO spectra covering the redshift range $2.8le z le 4.4$ (11 with $z>3.5$). Combining the APM survey confirmed and candidate damped lya absorbers with previous surveys, we find evidence for a turnover at z$sim$3 or a flattening at z$sim$2 in the cosmological mass density of neutral gas, $Omega_g$. end{itemize} The Lyman limit survey results are published in Storrie-Lombardi, et~al., 1994, ApJ, 427, L13. Here we describe the results for the DLA population of absorbers.
We have searched for molecular hydrogen in damped Lyman-alpha (DLA) and sub-DLA systems at z>1.8 using UVES at the VLT. Out of the 33 systems in our sample, 8 have firm and 2 have tentative detections of associated H2 absorption lines. Considering that 3 detections were already known from past searches, H2 is detected in 13 to 20 percent of the newly-surveyed systems. We report new detections of molecular hydrogen at z=2.087 and 2.595 toward, respectively, Q 1444+014 and Q 0405-443, and also reanalyse the system at z=3.025 toward Q 0347-383. We find that there is a correlation between metallicity and depletion factor in both our sample and also the global population of DLA systems (60 systems in total). The DLA and sub-DLA systems where H2 is detected are usually amongst those having the highest metallicities and the largest depletion factors. Moreover, the individual components where H2 is detected have depletion factors systematically larger than other components in the profiles. In two different systems, one of the H2-detected components even has [Zn/Fe]>=1.4. These are the largest depletion factors ever seen in DLA systems. All this clearly demonstrates the presence of dust in a large fraction of the DLA systems. The mean H2 molecular fraction is generally small in DLA systems and similar to what is observed in the Magellanic Clouds. From 58 to 75 percent of the DLA systems have log f<-6. This can be explained if the formation rate of H2 onto dust grains is reduced in those systems, probably because the gas is warm (T>1000 K) and/or the ionizing flux is enhanced relative to what is observed in our Galaxy.
We report evidence for a bimodality in damped Ly systems (DLAs). Using [C II] 158 mu cooling rates, lc, we find a distribution with peaks at lc=10^-27.4 and 10^-26.6 ergs s^-1 H^-1 separated by a trough at lc^crit ~= lc < 10^-27.0 ergs s^-1 H^-1. We divide the sample into low cool DLAs with lc < lc^crit and high cool DLAs with lc > lc^crit and find the Kolmogorv-Smirnov probabilities that velocity width, metallicity, dust-to-gas ratio, and Si II equivalent width in the two subsamples are drawn from the same parent population are small. All these quantities are significantly larger in the high cool population, while the H I column densities are indistinguishable in the two populations. We find that heating by X-ray and FUV background radiation is insufficient to balance the cooling rates of either population. Rather, the DLA gas is heated by local radiation fields. The rare appearance of faint, extended objects in the Hubble Ultra Deep Field rules out in situ star formation as the dominant star-formation mode for the high cool population, but is compatible with in situ star formation as the dominant mode for the low cool population. Star formation in the high cool DLAs likely arises in Lyman Break galaxies. We investigate whether these properties of DLAs are analogous to the bimodal properties of nearby galaxies. Using Si II equivalent width as a mass indicator, we construct bivariate distributions of metallicity, lc, and areal SFR versus the mass indicators. Tentative evidence is found for correlations and parallel sequences, which suggest similarities between DLAs and nearby galaxies. We suggest that the transition-mass model provides a plausible scenario for the bimodality we have found. As a result, the bimodality in current galaxies may have originated in DLAs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا