Do you want to publish a course? Click here

The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey

72   0   0.0 ( 0 )
 Added by Jill Rathborne
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey is a new survey of Galactic 13CO (1-0) emission. The survey used the SEQUOIA multi pixel array on the Five College Radio Astronomy Observatory 14 m telescope to cover a longitude range of l = 18 deg-55.7 deg and a latitude range of |b| < 1 deg, a total of 75.4 square degrees. Using both position-switching and On-The-Fly mapping modes, we achieved an angular sampling of 22 arcsec, better than half of the telescopes 46 arcsec angular resolution. The surveys velocity coverage is -5 to 135 km/s for Galactic longitudes l <= 40 deg and -5 to 85 km/s for Galactic longitudes l > 40 deg. At the velocity resolution of 0.21 km/s, the typical rms sensitivity is sigma(TA*)~0.13 K. The survey comprises a total of 1,993,522 spectra. We show integrated intensity images (zeroth moment maps), channel maps, position-velocity diagrams, and an average spectrum of the completed survey dataset. We also discuss the telescope and instrumental parameters, the observing modes, the data reduction processes, and the emission and noise characteristics of the dataset. The Galactic Ring Survey data are available to the community at www.bu.edu/galacticring or in DVD form by request.



rate research

Read More

The FCRAO Survey of the Taurus Molecular Cloud observed the 12CO and 13CO J=1-0 emission from 98 square degrees of this important, nearby star forming region. This set of data with 45 resolution comprises the highest spatial dynamic range image of an individual molecular cloud constructed to date, and provides valuable insights to the molecular gas distribution, kinematics, and the star formation process. In this contribution, we describe the observations, calibration, data processing, and characteristics of the noise and line emission of the survey. The angular distribution of 12CO and 13CO emission over 1 km/s velocity intervals and the full velocity extent of the cloud are presented. These reveal a complex, dynamic medium of cold, molecular gas.
We present the first survey of radio frequency interference (RFI) at the future site of the low frequency Square Kilometre Array (SKA), the Murchison Radio-astronomy Observatory (MRO), that both temporally and spatially resolves the RFI. The survey is conducted in a 1 MHz frequency range within the FM band, designed to encompass the closest and strongest FM transmitters to the MRO (located in Geraldton, approximately 300 km distant). Conducted over approximately three days using the second iteration of the Engineering Development Array in an all-sky imaging mode, we find a range of RFI signals. We are able to categorise the signals into: those received directly from the transmitters, from their horizon locations; reflections from aircraft (occupying approximately 13% of the observation duration); reflections from objects in Earth orbit; and reflections from meteor ionisation trails. In total we analyse 33,994 images at 7.92 s time resolution in both polarisations with angular resolution of approximately 3.5 deg., detecting approximately forty thousand RFI events. This detailed breakdown of RFI in the MRO environment will enable future detailed analyses of the likely impacts of RFI on key science at low radio frequencies with the SKA.
We report on the design, deployment, and first results from a scintillation detector deployed at the Murchison Radio-astronomy Observatory (MRO). The detector is a prototype for a larger array -- the Square Kilometre Array Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays with the Murchison Widefield Array and the low-frequency component of the Square Kilometre Array. The prototype design has been driven by stringent limits on radio emissions at the MRO, and to ensure survivability in a desert environment. Using data taken from Nov. 2018 to Feb. 2019, we characterize the detector response while accounting for the effects of temperature fluctuations, and calibrate the sensitivity of the prototype detector to through-going muons. This verifies the feasibility of cosmic ray detection at the MRO. We then estimate the required parameters of a planned array of eight such detectors to be used to trigger radio observations by the Murchison Widefield Array.
142 - St. Raetz 2009
We report on observations of several transit events of the transiting planet TrES-2 obtained with the Cassegrain-Teleskop-Kamera at the University Observatory Jena. Between March 2007 and November 2008 ten different transits and almost a complete orbital period were observed. Overall, in 40 nights of observation 4291 exposures (in total 71.52 h of observation) of the TrES-2 parent star were taken. With the transit timings for TrES-2 from the 34 events published by the TrES-network, the Transit Light Curve project and the Exoplanet Transit Database plus our own ten transits, we find that the orbital period is P=(2.470614 +/- 0.000001) d, a slight change by ~0.6 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we found a second dip after the transit which could either be due to a blended variable star or occultation of a second star or even an additional object in the system. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons.
The High Altitude Water Cherenkov Observatory (HAWC) has a wide field-of-view (FOV, $sim$2sr) and a high duty cycle ($sim$95%), which make it a powerful survey and monitoring experiment for sources of TeV gamma rays. We present a systematic survey of gamma-ray sources based on the Fermi 3FHL catalog. Sources are restricted to HAWCs FOV (Declination 19$^circ$ $pm$ 40$^circ$) and to extragalactic sources with redshift: 0.001 $<$ z $<$ 0.3. Extragalactic gamma-ray sources are dominated by active galactic nuclei (AGN) and TeV gamma-ray sources are mostly BL Lac-type blazars. The study of AGNs through high energy gamma rays has opened a new window into the extreme processes of particle acceleration in the jets of these objects and provides a way to study the photon propagation and extra-galactic background light. We have improved the HAWC sensitivity at low energies (100 GeV to 1 TeV) based on the Crab pulsar, which is an excellent calibration source for TeV gamma rays. We will present the results of searching for and monitoring nearby AGNs with the improved analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا