Do you want to publish a course? Click here

Surface temperature and synthetic spectral energy distributions for rotationally deformed stars

62   0   0.0 ( 0 )
 Added by Catherine Lovekin
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spectral energy distribution (SED) of a non-spherical star could differ significantly from the SED of a spherical star with the same average temperature and luminosity. Calculation of the SED of a deformed star is often approximated as a composite of several spectra, each produced by a plane parallel model of given effective temperature and gravity. The weighting of these spectra over the stellar surface, and hence the inferred effective temperature and luminosity, will be dependent on the inclination of the rotation axis of the star with respect to the observer, as well as the temperature and gravity distribution on the stellar surface. Here we calculate the surface conditions of rapidly rotating stars with a 2D stellar structure and evolution code and compare the effective temperature distribution to that predicted by von Zeipels law. We calculate the composite spectrum for a deformed star by interpolating within a grid of intensity spectra of plane parallel model atmospheres and integrating over the surface of the star. Using this method, we find that the deduced variation of effective temperature with inclination can be as much as 3000 K for an early B star, depending on the details of the underlying model.



rate research

Read More

In this paper, I present a new set of synthetic spectral energy distributions (SEDs) for young stellar objects (YSOs) spanning a wide range of evolutionary stages, from the youngest deeply embedded protostars to pre-main-sequence stars with few or no disks. These models include significant improvements on the previous generation of published models: in particular, the new models cover a much wider and more uniform region of parameter space, do not include highly model-dependent parameters, and include a number of improvements that make them more suited to modeling far-infrared and sub-mm observations of forming stars. Rather than all being part of a single monolithic set of models, the new models are split up into sets of varying complexity. The aim of the new set of models is not to provide the most physically realistic models for young stars, but rather to provide deliberately simplified models for initial modeling, which allows a wide range of parameter space to be explored. I present the design of the model set, and show examples of fitting these models to real observations to show how the new grid design can help us better understand what can be determined from limited unresolved observations. The models, as well as a Python-based fitting tool are publicly available to the community.
We present spectrophotometric data from 0.4 to 4.2 microns for bright, northern sky, Be stars and several other types of massive stars. Our goal is to use these data with ongoing, high angular resolution, interferometric observations to model the density structure and sky orientation of the gas surrounding these stars. We also present a montage of the H-alpha and near-infrared emission lines that form in Be star disks. We find that a simplified measurement of the IR excess flux appears to be correlated with the strength of emission lines from high level transitions of hydrogen. This suggests that the near-IR continuum and upper level line fluxes both form in the inner part of the disk, close to the star.
135 - E. Bertone 2004
We carried out a critical appraisal of the two theoretical models, Kurucz ATLAS9 and PHOENIX/NextGen, for stellar atmosphere synthesis. Our tests relied on the theoretical fit of SEDs for a sample of 334 target stars along the whole spectral-type sequence. The best-fitting physical parameters of stars allowed a calibration of the temperature and bolometric scale. The main conclusions of our analysis are: i) the fitting accuracy of both theoretical libraries drastically degrades at low Teff; ii) comparing with empirical calibrations, both ATLAS and NextGen fits tend to predict slightly warmer Teff, but ATLAS provides in general a sensibly better fit; iii) there is a striking tendency of NextGen to label target stars with an effective temperature and surface gravity in excess with respect to ATLAS. This is a consequence of some ``degeneracy in the solution space, partly induced by the different input physics and geometry constraints. A different T(tau) vertical structure of stellar atmosphere seems also required for NextGen synthetic SEDs in order to better account for limb-darkening effects in cool stars, as supported by the recent observations of the EROS BLG2000-5 microlensing event.
117 - R.I. Hynes 2012
We present HST/ACS ultraviolet photometry of three quiescent black hole X-ray transients: X-ray Nova Muscae 1991 (GU Mus), GRO J0422+32 (V518 Per), and X-ray Nova Vel 1993 (MM Vel), and one neutron star system, Aql X-1. These are the first quiescent UV detections of these objects. All are detected at a much higher level than expected from their companion stars alone and are significant detections of the accretion flow. Three of the four UV excesses can be characterized by a black body of temperature 5000-13,000K, hotter than expected for the quiescent outer disk. A good fit could not be found for MM Vel. The source of the black-body-like emission is most likely a heated region of the inner disk. Contrary to initial indications from spectroscopy there does not appear to be a systematic difference in the UV luminosity or spectral shape between black holes and neutron star systems. However combining our new data with earlier spectroscopy and published X-ray luminosities there is a significant difference in the X-ray to UV flux ratios with the neutron stars exhibiting Lx/Luv about 10x higher than the black hole systems. Since both bandpasses are expected to be dominated by accretion light this suggests the difference in X-ray luminosities cannot simply reflect differences in quiescent accretion rates and so is a more robust discriminator between the black hole and neutron star populations than the comparison of X-ray luminosities alone.
58 - Andrew W. Blain 2002
The spectral energy distributions (SEDs) of dusty high-redshift galaxies are poorly sampled in frequency and spatially unresolved. Their form is crucially important for estimating the large luminosities of these galaxies accurately, for providing circumstantial evidence concerning their power sources, and for estimating their redshifts in the absence of spectroscopic information. We discuss the suite of parameters necessary to describe their SEDs adequately without introducing unnecessary complexity. We compare directly four popular descriptions, explain the key degeneracies between the parameters in each when confronted with data, and highlight the differences in their best-fitting values. Using one representative SED model, we show that fitting to even a large number of radio, submillimetre and far-infrared (far-IR) continuum colours provides almost no power to discriminate between the redshift and dust temperature of an observed galaxy, unless an accurate relationship with a tight scatter exists between luminosity and temperature for the whole galaxy population. We review our knowledge of this luminosity-dust temperature relation derived from three galaxy samples, to better understand the size of these uncertainties. Contrary to recent claims, we stress that far-IR-based photometric redshifts are unlikely to be sufficiently accurate to impose useful constraints on models of galaxy evolution: finding spectroscopic redshifts for distant dusty galaxies will remain essential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا