We discuss the detectability of high-redshift galaxies via [CII] 158 micron line emission by coupling an analytic model with cosmological Smoothed Particle Hydrodynamics (SPH) simulations that are based on the concordance Lambda cold dark matter (CDM) model. Our analytic model describes a multiphase interstellar medium irradiated by the far ultra-violet radiation from local star-forming regions, and it calculates thermal and ionization equilibrium between cooling and heating. The model allows us to predict the mass fraction of a cold neutral medium (CNM) embedded in a warm neutral medium (WNM). Our cosmological SPH simulations include a treatment of radiative cooling/heating, star formation, and feedback effects from supernovae and galactic winds. Using our method, we make predictions for the [CII] luminosity from high-redshift galaxies which can be directly compared with upcoming observations by the Atacama Large Millimeter Array (ALMA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA). We find that the number density of high-redshift galaxies detectable by ALMA and SPICA via [CII] emission depends significantly on the amount of neutral gas which is highly uncertain. Our calculations suggest that, in a CDM universe, most [CII] sources at z=3 are faint objects with Snu < 0.01 mJy. Lyman-break galaxies (LBGs) brighter than R_AB=23.5 mag are expected to have flux densities Snu = 1-3 mJy depending on the strength of galactic wind feedback. The recommended observing strategy for ALMA and SPICA is to aim at very bright LBGs or star-forming DRG/BzK galaxies.