Do you want to publish a course? Click here

Keck Interferometer Observations of FU Orionis Objects

136   0   0.0 ( 0 )
 Added by Rafael Millan-Gabet
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new K-band long baseline interferometer observations of three young stellar objects of the FU Orionis class, V1057 Cyg, V1515 Cyg and Z CMa-SE, obtained at the Keck Interferometer during its commissioning science period. The interferometer clearly resolves the source of near-infrared emission in all three objects. Using simple geometrical models we derive size scales (0.5-4.5 AU) for this emission. All three objects appear significantly more resolved than expected from simple models of accretion disks tuned to fit the broadband optical and infrared spectro-photometry. We explore variations in the key parameters that are able to lower the predicted visibility amplitudes to the measured levels, and conclude that accretion disks alone do not reproduce the spectral energy distributions and K-band visibilities simultaneously. We conclude that either disk models are inadequate to describe the near-infrared emission, or additional source components are needed. We hypothesize that large scale emission (10s of AU) in the interferometer field of view is responsible for the surprisingly low visibilities. This emission may arise in scattering by large envelopes believed to surround these objects.



rate research

Read More

The mid- to far-infrared emission of the outbursting FU Orionis objects has been attributed either to a flared outer disk or to an infalling envelope. We revisit this issue using detailed radiative transfer calculations to model the recent, high signal-to-noise data from the IRS instrument on the {Spitzer Space Telescope}. In the case of FU Ori, we find that a physically-plausible flared disk irradiated by the central accretion disk matches the observations. Building on our previous work, our accretion disk model with outer disk irradiation by the inner disk reproduces the spectral energy distribution between ~4000 angstroms to ~40 microns. Our model is consistent with near-infrared interferometry but there are some inconsistencies with mid-infared interferometric results. Including the outer disk allows us to refine our estimate of the outer radius of the outbursting, high mass accretion rate disk in FU Ori as ~ 0.5 AU, which is a crucial parameter in assessing theories of the FU Orionis phenomenon. We are able to place an upper limit on the mass infall rate of any remnant envelope infall rate to ~ 7e-7 Msun/yr assuming a centrifugal radius of 200 AU. The FUor BBW 76 is also well modelled by a 0.6 AU inner disk and a flared outer disk. However, V1515 Cyg requires an envelope with an outflow cavity to adequately reproduce the IRS spectrum. In contrast with the suggestion by Green et al., we do not require a flattened envelope to match the observations; the inferred cavity shape is qualitatively consistent with typical protostellar envelopes. This variety of dusty structures suggests that the FU Orionis phase can be present at either early or late stages of protostellar evolution.
71 - C. Clarke 2005
We present the results of a photometric monitoring campaign of three well studied FU Orionis systems (FU Orionis, V1057 Cygni and V1515 Cygni) undertaken at Maidanak Observatory between 1981 and 2003. When combined with photometric data in the literature, this database provides a valuable resource for searching for short timescale variability - both periodic and aperiodic - as well as for studying the secular evolution of these systems. In the case of V1057 Cyg (which is the system exhibiting the largest changes in brightness since it went into outburst) we compare the photometric data with time dependent models. We show that prior to the end of the `plateau stage in 1996, the evolution of V1057 Cyg in the $V-(B-V)$ colour-magnitude diagram is well represented by disc instability models in which the outburst is triggered by some agent - such as an orbiting planet - in the inner disc. Following the end of the plateau phase in 1996, the dimming and irregular variations are consistent with occultation of the source by a variable dust screen, which has previously been interpreted in terms of dust condensation events in the observed disc wind. Here we instead suggest that this effect results from the interaction between the wind and an infalling dusty envelope, the existence of this envelope having been previously invoked in order to explain the mid infrared emissio of FU Orionis systems. We discuss how this model may explain some of the photometric and spectroscopic characteristics of FU Orionis systems in general.
During their formation phase stars gain most of their mass in violent episodic accretion events, such as observed in FU Orionis (FUor) and EXor stars. V346 Normae is a well-studied FUor that underwent a strong outburst beginning in $sim1980$. Here, we report photometric and spectroscopic observations which show that the visual/near-infrared brightness has decreased dramatically between the 1990s and 2010 (${Delta}Rapprox10.9^{rm m}$, ${Delta}Japprox7.8^{rm m}$, ${Delta}Kapprox5.8^{rm m}$). The spectral properties of this fading event cannot be explained with variable extinction alone, but indicate a drop in accretion rate by 2-3 orders of magnitude, marking the first time that a member of the FUor class has been observed to switch to a very low accretion phase. Remarkably, in the last few years (2011-2015) V346 Nor has brightened again at all near-infrared wavelengths, indicating the onset of a new outburst event. The observed behaviour might be consistent with the clustered luminosity bursts that have been predicted by recent gravitational instability and fragmentation models for the early stages of protostellar evolution. Given V346 Nors unique characteristics (concerning outburst duration, repetition frequency, and spectroscopic diagnostics), our results also highlight the need for revisiting the FUor/EXor classification scheme.
By using the ALFA adaptive optics system at the 3.6m telescope of the Calar Alto Observatory we detected a faint red star in the apparent vicinity of FU Ori, the prototype of the FUor outburst stars. Independent confirmation of the detection is obtained from archival PUEO/CFHT images. The separation between the companion candidate and FU Ori is 0.50 and their brightness contrast is around 4 magnitudes. We discuss the possible nature of the newly detected star based on near-infrared photometry and its proper motion relative to FU Ori. The photometric data are consistent with a nearby late-type main sequence star, a background giant star, and a pre-main sequence star. On the basis of the proper motion and the stellar surface density in the direction towards FU Ori, we argue that the probabilities of the first two options are very low.
We present the first science results from the Keck Interferometer, a direct-detection infrared interferometer utilizing the two 10-meter Keck telescopes. The instrument and system components are briefly described. We then present observations of the T Tauri object DG Tau, which is resolved by the interferometer. The resolved component has a radius of 0.12 to 0.24 AU, depending on the assumed stellar and extended component fluxes and the model geometry used. Possible origins and implications of the resolved emission are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا