Infrared and radio study of star forming regions associated with IRAS 19111+1048 and IRAS 19110+1045


Abstract in English

A multiwavelength study of the star forming regions associated with IRAS 19111+1048 and IRAS 19110+1045 has been carried out. These have been simultaneously mapped in two far infrared bands at lambda_eff ~ 130 and 200 micron with ~1 angular resolution using the TIFR 1-m balloon borne telescope. The radio emission from the ionised gas of these regions has been imaged at 1280, 610 and 325 MHz using the Giant Metrewave Radio Telescope, India. A total of 20 compact radio sources have been detected from the high resolution radio map of IRAS 19111+1048 at 1280 MHz. Assuming these sources to represent exciting zero age main sequence (ZAMS) stars, the initial mass function is found to be quite steep, with the power law index of 5.3+-0.5 for the mass range 14 < m/M_sun < 33. The spectral types of the ZAMS stars inferred independently from the radio and NIR measurements match very well for a good fraction of the radio sources having NIR counterparts. For IRAS 19110+1045 region, seven radio sources have been detected of which two are associated with deeply embedded 2MASS objects. Self consistent radiative transfer modelling aimed at extracting important physical and geometrical details of the two IRAS sources has been carried out. A uniform density distribution of dust and gas is implied for both the sources. The extents of ionised gas, number of ZAMS stars, presence of deeply embedded sources and lower value of L/M for the cloud, support the youth of IRAS 19110+1045 vis-a-vis its neighbour, IRAS 19111+1048, consistent with earlier studies.

Download