Do you want to publish a course? Click here

XMM-Newton Observation of IC 310 in the Outer Region of the Perseus Cluster of Galaxies

132   0   0.0 ( 0 )
 Added by Kosuke Sato
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from an XMM-Newton observation of the head-tail radio galaxy IC 310 located in the southwest region of the Perseus cluster. The spectrum is well-fitted by an absorbed power-law model with a photon index of $2.50 pm 0.02$ with no significant absorption excess. The X-ray image shows a point-like emission at IC 310 without any signs of a structure correlated with the radio halo tail. The temperature of the intracluster medium surrounding IC 310 declines as a function of distance from the cluster center, from $ kT sim 6$ keV in the northeast corner of the field of view to about 3 keV in the southwest region. Although we do not find any sharp edges in the surface brightness profile, a brightness excess over a smooth $beta$ model by about 20% is seen. The temperature also rises by about 10% in the same region. This indicates that the IC 310 region is a subcluster probably infalling into the Perseus cluster, and the gas in front of IC 310 towards the Perseus cluster is likely to be compressed by the large-scale motion, which supports the view that the IC 310 system is undergoing a merger.



rate research

Read More

We present results from the XMM-Newton observation of the non-cooling flow cluster A1060. Large effective area of XMM-Newton enables us to investigate the nature of this cluster in unprecedented detail. From the observed surface brightness distribution, we have found that the gravitational mass distribution is well described by the NFW profile but with a central density slope of ~1.5. We have undoubtedly detected a radial temperature decrease of as large as ~30% from the center to the outer region (r ~13), which seems much larger than that expected from the temperature profile averaged over nearby clusters. We have established that the temperature of the region ~7 southeast of the center is higher than the azimuthally averaged temperature of the same radius by ~20%. Since the pressure of this region already reaches equilibrium with the environment, the temperature structure can be interpreted as having been produced between 4*10^7 yr (the sound-crossing time) and 3*10^8 yr (the thermal conduction time) ago. We have found that the high-metallicity blob located at ~1.5 northeast of NGC 3311 is more extended and its iron mass of 1.9*10^7 M_solar is larger by an order of magnitude than estimated from our Chandra observation. The amount of iron can still be considered as being injected solely from the elliptical galaxy NGC3311.
112 - M. Arnaud 2000
We present a temperature map and a temperature profile of the central part (r < 20 or 1/4 virial radius) of the Coma cluster. We combined 5 overlapping pointings made with XMM/EPIC/MOS and extracted spectra in boxes of 3.5 X 3.5. The temperature distribution around the two central galaxies is remarkably homogeneous (r<10), contrary to previous ASCA results, suggesting that the core is actually in a relaxed state. At larger distance from the cluster center we do see evidence for recent matter accretion. We confirm the cool area in the direction of NGC 4921, probably due to gas stripped from an infalling group. We find indications of a hot front in the South West, in the direction of NGC4839, probably due to an adiabatic compression.
An XMM-Newton imaging spectroscopy analysis of the galaxy cluster A1644 is presented. A1644 is a complex merging system consisting of a main and a sub cluster. A trail of cool, metal-rich gas has been discovered close to the sub cluster. The combination of results from X-ray, optical, and radio data, and a comparison to a hydrodynamical simulation suggest that the sub cluster has passed by the main cluster off-axis and a fraction of its gas has been stripped off during this process. Furthermore, for this merging system, simple effects are illustrated which can affect the use of clusters as cosmological probes. Specifically, double clusters may affect estimates of the cluster number density when treated as a single system. Mergers, as well as cool cores, can alter the X-ray luminosity and temperature measured for clusters, causing these values to differ from those expected in equilibrium.
Abell 3667 is the archetype of a merging cluster with radio relics. The NW radio relic is the brightest cluster relic or halo known, and is believed to be due to a strong merger shock. We have observed the NW relic for 40 ksec of net XMM time. We observe a global decline of temperature across the relic from 6 to 1 keV, similar to the Suzaku results. Our new observations reveal a sharp change of both temperature and surface brightness near the position of the relic. The increased X-ray emission on the relic can be equivalently well described by either a thermal or nonthermal spectral model. The parameters of the thermal model are consistent with a Mach number M~2 shock and a shock speed of ~1200 km s^-1. The energy content of the relativistic particles in the radio relic can be explained if they are (re)-accelerated by the shock with an efficiency of ~0.2%. Comparing the limit on the inverse Compton X-ray emission with the measured radio synchrotron emission, we set a lower limit to the magnetic field in the relic of 3 muG. If the emission from the relic is non-thermal, this lower limit is in fact the required magnetic field.
We employ a long XMM-Newton observation of the core of the Perseus cluster to validate claims of a non-thermal component discovered with Chandra. From a meticulous analysis of our dataset, which includes a detailed treatment of systematic errors, we find the 2-10 keV surface brightness of the non-thermal component to be smaller than about 5x10^-16 erg cm^-2s^-1arcsec^-2. The most likely explanation for the discrepancy between the XMM-Newton and Chandra estimates is a problem in the effective area calibration of the latter. Our EPIC based magnetic field lower limits are not in disagreement with Faraday rotation measure estimates on a few cool cores and with a minimum energy estimate on Perseus. In the not too distant future Simbol-X may allow detection of non-thermal components with intensities more than 10 times smaller than those that can be measured with EPIC; nonetheless even the exquisite sensitivity within reach for Simbol-X might be insufficient to detect the IC emission from Perseus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا