Do you want to publish a course? Click here

Morphological Studies of the SWIRE Galaxy Population in the UGC 10214 HST/ACS field

72   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of a morphological analysis of a small subset of the Spitzer Wide-area InfraRed Extragalactic survey (SWIRE) galaxy population. The analysis is based on public ACS data taken inside the SWIRE N1 field, which are the deepest optical high-resolution imaging available within the SWIRE fields as of today. Our reference sample includes 156 galaxies detected by both ACS and SWIRE. Among the various galaxy morphologies, we disentangle two main classes, spheroids (or bulge-dominated galaxies) and disk-dominated ones, for which we compute the number counts as a function of flux. We then limit our sample to objects with IRAC fluxes brighter than 10 microJy, estimated ~90% completeness limit of the SWIRE catalogues, and compare the observed counts to model predictions. We find that the observed counts of the spheroidal population agree with the expectations of a hierarchical model while a monolithic scenario predicts steeper counts. Both scenaria, however, under-predict the number of late-type galaxies. These observations show that the large majority (close to 80 per cent) of the 3.6 and 4.5 micron galaxy population, even at these moderately faint fluxes, is dominated by spiral and irregular galaxies or mergers.



rate research

Read More

(Abridged) We study the internal color properties of a morphologically selected sample of spheroidal galaxies taken from HST/ACS ERO program of UGC 10214 (``The Tadpole). By taking advantage of the unprecedented high resolution of the ACS in this very deep dataset we are able to characterize spheroids at sub-arcseconds scales. Using the V_606W and I_814W bands, we construct V-I color maps and extract color gradients for a sample of spheroids at I_814W < 24 mag. We investigate the existence of a population of morphologically classified spheroids which show extreme variation in their internal color properties similar to the ones reported in the HDFs. These are displayed as blue cores and inverse color gradients with respect to those accounted from metallicity variations. Following the same analysis we find a similar fraction of early-type systems (~30%-40%) that show non-homologous internal colors, suggestive of recent star formation activity. We present two statistics to quantify the internal color variation in galaxies and for tracing blue cores, from which we estimate the fraction of non-homogeneous to homogeneous internal colors as a function of redshift up to z<1.2. We find that it can be described as about constant as a function of redshift, with a small increase with redshift for the fraction of spheroids that present strong color dispersions. The implications of a constant fraction at all redshifts suggests the existence of a relatively permanent population of evolving spheroids up to z~1. We discuss the implications of this in the context of spheroidal formation.
We study the population of compact stellar clusters (CSCs) in M81, using the HST/ACS images in the filters F435W, F606W and F814W covering, for the first time, the entire optical extent of the galaxy. Our sample contains 435 clusters of FWHM less than 10 ACS pixels (9 pc). The sample shows the presence of two cluster populations, a blue group of 263 objects brighter than B=22 mag, and a red group of 172 objects, brighter than B=24 mag. Based on the analysis of colour magnitude diagrams and making use of simple stellar population models, we find the blue clusters are younger than 300 Myr with some clusters as young as few Myr, and the red clusters are as old as globular clusters. The luminosity function of the blue group follows a power-law distribution with an index of 2.0, typical value for young CSCs in other galaxies. The power-law shows unmistakable signs of truncation at I=18.0 mag (M_I=-9.8 mag), which would correspond to a mass-limit of 4x10^4 M_solar if the brightest clusters are younger than 10 Myr. The red clusters have photometric masses between 10^5 to 2x10^7 M_solar for the adopted age of 5 Gyr and their luminosity function resembles very much the globular cluster luminosity function in the Milky Way. The brightest GC in M81 has M_B^0=-10.3 mag, which is ~0.9 mag brighter than w-Cen, the most massive GC in the Milky Way.
We present the first Advanced Camera for Surveys (ACS) observations of young star clusters in the colliding/merging galaxy UGC 10214. The observations were made as part of the Early Release Observation (ERO) program for the newly installed ACS during service mission SM3B for the Hubble Space Telescope (HST). Many young star clusters can be identified in the tails of UGC 10214, with ages ranging from ~3 Myr to 10 Myr. The extreme blue V-I (F606W-F814W) colors of the star clusters found in the tail of UGC 10214 can only be explained if strong emission lines are included with a young stellar population. This has been confirmed by our Keck spectroscopy of some of these bright blue stellar knots. The most luminous and largest of these blue knots has an absolute magnitude of M_V = -14.45, with a half-light radius of 161 pc, and if it is a single star cluster, would qualify as a super star cluster (SSC). Alternatively, it could be a superposition of multiple scaled OB associations or clusters. With an estimated age of ~ 4-5 Myr, its derived mass is < 1.3 x 10^6 solar masses. Thus the young stellar knot is unbound and will not evolve into a normal globular cluster. The bright blue clusters and associations are much younger than the dynamical age of the tail, providing strong evidence that star formation occurs in the tail long after it was ejected. UGC 10214 provides a nearby example of processes that contributed to the formation of halos and intra-cluster media in the distant and younger Universe.
A detailed imaging analysis of the globular cluster (GC) system of the Sombrero galaxy (NGC 4594) has been accomplished using a six-image mosaic from the Hubble Space Telescope Advanced Camera for Surveys. The quality of the data is such that contamination by foreground stars and background galaxies is negligible for all but the faintest 5% of the GC luminosity function (GCLF). This enables the study of an effectively pure sample of 659 GCs until ~2 mags fainter than the turnover magnitude, which occurs at M_V=-7.60+/-0.06 for an assumed m-M=29.77. Two GC metallicity subpopulations are easily distinguishable, with the metal-poor subpopulation exhibiting a smaller intrinsic dispersion in color compared to the metal-rich subpopulation. Three new discoveries include: (1) A metal-poor GC color-magnitude trend. (2) Confirmation that the metal-rich GCs are ~17% smaller than the metal-poor ones for small projected galactocentric radii (less than ~2 arcmin). However, the median half-light radii of the two subpopulations become identical at ~3 arcmin from the center. This is most easily explained if the size difference is the result of projection effects. (3) The brightest (M_V < -9.0) members of the GC system show a size-magnitude upturn where the average GC size increases with increasing luminosity. Evidence is presented that supports an intrinsic origin for this feature rather than a being result from accreted dwarf elliptical nuclei. In addition, the metal-rich GCs show a shallower positive size-magnitude trend, similar to what is found in previous studies of young star clusters.
422 - F. Annibali 2008
We present photometry with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) of stars in the Magellanic starburst galaxy NGC 4449. The galaxy has been imaged in the F435W (B), F555W (V) and F814W (I) broad-band filters, and in the F658N (Halpha) narrow-band filter. Our photometry includes ~300,000 objects in the (B, V) color-magnitude diagram (CMD) down to V < 28, and ~400,000 objects in the (V, I) CMD, down to I < 27 . A subsample of ~200,000 stars has been photometrized in all the three bands simultaneously. The features observed in the CMDs imply a variety of stellar ages up to at least 1 Gyr, and possibly as old as a Hubble time. The spatial variation of the CMD morphology and of the red giant branch colors point toward the presence of an age gradient: young and intermediate-age stars tend to be concentrated toward the galactic center, while old stars are present everywhere. The spatial variation in the average luminosity of carbon stars suggests that there is not a strong metallicity gradient (< 0.2 dex). Also, we detect an interesting resolved star cluster on the West side of the galaxy, surrounded by a symmetric tidal or spiral feature consisting of young stars. The positions of the stars in NGC 4449 younger than 10 Myr are strongly correlated with the Halpha emission. We derive the distance of NGC 4449 from the tip of the red giant branch to be D=3.82 pm 0.27 Mpc. This result is in agreement with the distance that we derive from the luminosity of the carbon stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا