No Arabic abstract
We present iron and $alpha$ element (Mg, Ca, Ti) abundances for a sample of 15 Red Giant Branch stars belonging to the main body of the Sagittarius dwarf Spheroidal galaxy. Abundances have been obtained from spectra collected using the high resolution spectrograph FLAMES-UVES mounted at the VLT. Stars of our sample have a mean metallicity of [Fe/H]=-0.41$pm$0.20 with a metal poor tail extending to [Fe/H]=-1.52. The $alpha$ element abundance ratios are slightly subsolar for metallicities higher than [Fe/H]gtsima-1, suggesting a slow star formation rate. The [$alpha$/Fe] of stars having [Fe/H]$<$-1 are compatible to what observed in Milky Way stars of comparable metallicity.
Context. The Sagittarius (Sgr) dwarf spheroidal galaxy is currently being disrupted under the strain of the Milky Way. A reliable reconstruction of Sgr star formation history can only be obtained by combining core and stream information. Aims. We present radial velocities for 67 stars belonging to the Sgr Stream. For 12 stars in the sample we also present iron (Fe) and $alpha$-element (Mg, Ca) abundances. Methods. Spectra were secured using different high resolution facilities: UVES@VLT,
[email protected], and SARG@TNG. Radial velocities are obtained through cross correlation with a template spectra. Concerning chemical analysis, for the various elements, selected line equivalent widths were measured and abundances computed using the WIDTH code and ATLAS model atmospheres. Results. The velocity dispersion of the trailing tail is found to be $sigma$=8.3$pm$0.9 km s$^{-1}$, i.e., significantly lower than in the core of the Sgr galaxy and marginally lower than previous estimates in the same portion of the stream. Stream stars follow the same trend as Sgr main body stars in the [$alpha$/Fe] vs [Fe/H] plane. However, stars are, on average, more metal poor in the stream than in the main body. This effect is slightly stronger in stars belonging to more ancient wraps of the stream, according to currently accepted models of Sgr disruption.
We performed a detailed analysis of elemental abundances, dust features, and polycyclic aromatic hydrocarbons (PAHs) in the C-rich planetary nebula (PN) Wray16-423 in the Sagittarius dwarf spheroidal galaxy, based on a unique dataset taken from the Subaru/HDS, MPG/ESO FEROS, HST/WFPC2, and Spitzer/IRS. We performed the first measurements of Kr, Fe, and recombination O abundance in this PN. The extremely small [Fe/H] implies that most Fe atoms are in the solid phase, considering into account the abundance of [Ar/H]. The Spitzer/IRS spectrum displays broad 16-24 um and 30 um features, as well as PAH bands at 6-9 um and 10-14 um. The unidentified broad 16-24 um feature may not be related to iron sulfide (FeS), amorphous silicate, or PAHs. Using the spectral energy distribution model, we derived the luminosity and effective temperature of the central star, and the gas and dust masses. The observed elemental abundances and derived gas mass are in good agreement with asymptotic giant branch nucleosynthesis models for an initial mass of 1.90 Msun and a metallicity of Z=0.004. We infer that respectively about 80 %, 50 %, and 90 % of the Mg, S, and Fe atoms are in the solid phase. We also assessed the maximum possible magnesium sulfide (MgS) and iron-rich sulfide (Fe50S) masses and tested whether these species can produce the band flux of the observed 30 um feature. Depending on what fraction of the sulfur is in sulfide molecules such as CS, we conclude that MgS and Fe50S could be possible carriers of the 30 um feature in this PN.
The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal poor Sgr dSph main body population. We derive a metallicity of [FeII/H]=-2.26+-0.10 for NGC 5053, and of [FeI/H]=-1.99+-0.075 and -1.97+-0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal poor globular clusters in the MW. Both clusters display an alpha enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. The chemistry of the Sgr dSph main body populations is similar to the one of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system.
We present spectroscopic observations from the {it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$times 10^{-8} $M$_{odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars show the strongest SiC feature in our present Local Group sample.
We present the metallicities and carbon abundances of four newly discovered metal-poor stars with $ -2.2 <$ [Fe/H] $< -1.6$ in the Sagittarius dwarf spheroidal galaxy. These stars were selected as metal-poor member candidates using a combination of public photometry from the SkyMapper Southern Sky Survey and proper motion data from the second data release from the Gaia mission. The SkyMapper filters include a metallicity-sensitive narrow-band $v$ filter centered on the Ca II K line, which we use to identify metal-poor candidates. In tandem, we use proper motion data to remove metal-poor stars that are not velocity members of the Sagittarius dwarf spheroidal galaxy. We find that these two datasets allow for efficient identification of metal-poor members of the Sagittarius dwarf galaxy to follow-up with further spectroscopic study. Two of the stars we present have [Fe/H] $< -2.0$, which adds to the few other such stars currently identified in the Sagittarius dwarf galaxy that are likely not associated with the globular cluster M54, which resides in the nucleus of the system. Our results confirm that there exists a very metal-poor stellar population in the Sagittarius dwarf galaxy. We find that none of our stars can be classified as carbon-enhanced metal-poor stars. Efficiently identifying members of this population will be helpful to further our understanding of the early chemical evolution of the system.