Do you want to publish a course? Click here

Hydrogen Burning of 17-O in Classical Novae

88   0   0.0 ( 0 )
 Added by Vincent Tatischeff
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the observation of a previously unknown resonance at E=194.1+/-0.6 keV (lab) in the 17-O(p,alpha)14-N reaction, with a measured resonance strength omega_gamma(p,alpha)=1.6+/-0.2 meV. We studied in the same experiment the 17-O(p,gamma)18-F reaction by an activation method and the resonance-strength ratio was found to be omega_gamma(p,alpha)/omega_gamma(p,gamma)=470+/-50. The corresponding excitation energy in the 18-F compound nucleus was determined to be 5789.8+/-0.3 keV by gamma-ray measurements using the 14-N(alpha,gamma)18-F reaction. These new resonance properties have important consequences for 17-O nucleosynthesis and gamma-ray astronomy of classical novae.



rate research

Read More

72 - T. Ohta , M. Fujiwara , T. Hotta 2020
We report on the frozen-spin polarized hydrogen--deuteride (HD) targets for photoproduction experiments at SPring-8/LEPS. Pure HD gas with a small amount of ortho-H2 (~0.1%) was liquefied and solidified by liquid helium. The temperature of the produced solid HD was reduced to about 30 mK with a dilution refrigerator. A magnetic field (17 T) was applied to the HD to grow the polarization with the static method. After the aging of the HD at low temperatures in the presence of a high-magnetic field strength for 3 months, the polarization froze. Almost all ortho-H2 molecules were converted to para-H2 molecules that exhibited weak spin interactions with the HD. If the concentration of the ortho-H2 was reduced at the beginning of the aging process, the aging time can be shortened. We have developed a new nuclear magnetic resonance (NMR) system to measure the relaxation times (T1) of the 1H and 2H nuclei with two frequency sweeps at the respective frequencies of 726 and 111 MHz, and succeeded in the monitoring of the polarization build-up at decreasing temperatures from 600 to 30 mK at 17 T. This technique enables us to optimize the concentration of the ortho-H2 and to efficiently polarize the HD target within a shortened aging time.
We critically examine the recent claimed detection of Raman scattered O VI at around 6830AA in the iron curtain stage spectra of the classical CO nova V339 Del. The observed line variations are compatible in profile and timing of emission line strength with an excited state transition of neutral carbon. Line formation in classical nova ejecta is physically very different from that in symbiotic binaries, in which the O VI emission line is formed within the wind of the companion red giant at low differential velocity. The ejecta velocity and density structure prevent the scattering from producing analogous features. There might , however, be a broadband spectropolarimetric signature of the Raman process and also Rayleigh scattering at some stage in the expansion. We show that the neutral carbon spectrum, hitherto under-exploited for novae, is especially useful as a probe of the structure of the ejecta during the early, optically thick stages of the expansion
A general review of the relevance of classical novae for the chemical evolution of the Galaxy, as well as for Galactic radioactivity is presented. A special emphasis is put on the pioneering work done by Jim Truran in this field of research. The impact of recent developments in nuclear astrophysics on nova nucleosynthesis, together with the prospects for observability of novae radioactivities with the INTEGRAL satellite are discussed.
312 - L. Trache , A. Banu , J. C. Hardy 2009
We have developed a technique to measure beta-delayed proton decay of proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. The beam is pulsed and beta-p decay of the pure sources collected in beam is measured between beam pulses. Implantation avoids the problems with detector windows and allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. Using this technique, we have studied the isotopes 23Al and 31Cl, both important for understanding explosive H-burning in novae. They were produced in the reactions 24Mg(p,2n)23Al and 32S(p,2n)31Cl, respectively, in inverse kinematics, from stable beams at 48 and 40 MeV/u, respectively. We give details about the technique, its performances and the results for 23Al and 31Cl beta-p decay. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and would work even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions 22Na(p,g)23Mg and 30P(p,g)31S, respectively.
The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this review, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا