Do you want to publish a course? Click here

Parameter Study of Star-Discs Encounters

53   0   0.0 ( 0 )
 Added by Susanne Pfalzner Dr
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interactions between disc-surrounded stars might play a vital role in the formation of planetary systems. Here a first parameter study of the effects of encounters on low-mass discs is presented. The dependence of the mass and angular momentum transport on the periastron distance, the relative mass of the encountering stars and eccentricity of the encounter is investigated in detail. This is done for prograde and retrograde coplanar encounters as well as non-coplanar encounters. For distant coplanar encounters our simulation results agree with the analytical approximation of the angular momentum loss by Ostriker(1994). However, for close or high-mass encounters, significant differences to this approximation are found. This is especially so in the case of retrograde encounters, where the analytical result predict no angular momentum loss regardless of the periastron distance whereas the simulations find up to ~ 20% loss for close encounters. For the non-coplanar case a more complex dependency on the inclination between orbital path and disc plane is found than for distant encounters. For the coplanar prograde case new fitting formulae for the mass and angular momentum loss are obtained, which cover the whole range from grazing to distant encounters. In addition, the final disc size and the mass exchange between discs is examined, demonstrating that for equal mass stars in encounters as close as 1.5 the disc radius, the disc size only is reduced by approximately 10%.

rate research

Read More

53 - Ingo Thies 2005
We present a parameter study of the possibility of tidally triggered disk instability. Using a restricted N-body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M_sun can probably induce gravitational instabilities in the pre-planetary solar disk for prograde passages with minimum separations below 80-170 AU for isothermal or adiabatic disks. Inclined and retrograde encounters lead to similar results but require slightly closer passages. Such encounter distances are quite likely in young moderately massive star clusters (Scally & Clarke 2001; Bonnell et al. 2001). The induced gravitational instabilities may lead to enhanced planetesimal formation in the outer regions of the protoplanetary disk, and could therefore be relevant for the existence of Uranus and Neptune, whose formation timescale of about 100 Myr (Wuchterl, Guillot & Lissauer 2000) is inconsistent with the disk lifetimes of about a few Myr according to observational data by Haisch, Lada & Lada (2001). The relatively small gas/solid ratio in Uranus and Neptune can be matched if the perturbing fly-by occurred after early gas depletion of the solar system, i.e. when the solar system was older than about 5 Myr. We also confirm earlier results by Heller (1993) that the observed 7 degree tilt of the solar equatorial plane relative to the ecliptic plane could be the consequence of such a close encounter.
363 - S.Pfalzner 2003
A prerequisite for the formation of stars and planetary systems is that angular momentum is transported in some way from the inner regions of the accretion disc. Tidal effects may play an important part in this angular momentum transport. Here the angular momentum transfer in an star-disc encounter is investigated numerically for a variety of encounter parameters in the case of low mass discs. Although good agreement is found with analytical results for the entire disc, the loss {it inside} the disc can be up to an order of magnitude higher than previously assumed. The differences in angular momentum transport by secondaries on a hyperbolic, parabolic and elliptical path are shown, and it is found that a succession of distant encounters might be equally, if not more, successful in removing angular momentum than single close encounter.
We study mass transfers between debris discs during stellar encounters. We carried out numerical simulations of close flybys of two stars, one of which has a disc of planetesimals represented by test particles. We explored the parameter space of the encounters, varying the mass ratio of the two stars, their pericentre and eccentricity of the encounter, and its geometry. We find that particles are transferred to the other star from a restricted radial range in the disc and the limiting radii of this transfer region depend on the parameters of the encounter. We derive an approximate analytic description of the inner radius of the region. The efficiency of the mass transfer generally decreases with increasing encounter pericentre and increasing mass of the star initially possessing the disc. Depending on the parameters of the encounter, the transfer particles have a specific distributions in the space of orbital elements (semimajor axis, eccentricity, inclination, and argument of pericentre) around their new host star. The population of the transferred particles can be used to constrain the encounter through which it was delivered. We expect that many stars experienced transfer among their debris discs and planetary systems in their birth environment. This mechanism presents a formation channel for objects on wide orbits of arbitrary inclinations, typically having high eccentricity but possibly also close-to-circular (eccentricities of about 0.1). Depending on the geometry, such orbital elements can be distinct from those of the objects formed around the star.
Simulations of the collapse and fragmentation of turbulent molecular clouds and dense young clusters show that encounters between disc-surrounded stars are relatively common events which should significantly influence the resulting disc structure. In turn this should alter the accretion rate of disc matter onto the star and the conditions under which planet formation occurs. Although the effects of star-disc encounters have been previously investigated, very little is known about encounters where both stars are surrounded by discs. In this paper encounters of such disc-disc systems are studied quantitatively. It is found that for low-mass discs ($M_D$= 0.01 $M_sun$) the results from star-disc encounters can be straightforwardly generalized to disc-disc encounters as long as there is no mass transport between the discs. Differences to star-disc encounters occur naturally where significant amounts of matter are transported between the discs. In this case it is found that although the mass distribution does not change significantly, matter caught onto highly eccentric orbits is transported surprisingly far inside the disc. The captured mass partly replenishes the disc, but has a much lower angular momentum. This can lead to a reduction of the angular momentum in the entire disc and thus considerably increased accretion shortly after the encounter as well as in the long term.
Investigations of stellar encounters in cluster environments have demonstrated their potential influence on the mass and angular momentum of protoplanetary discs around young stars. In this study it is investigated in how far the initial surface density in the disc surrounding a young star influences the outcome of an encounter. Based on a power-law ansatz for the surface density, $Sigma(r) propto r^{-p}$, a parameter study of star-disc encounters with different initial disc-mass distributions has been performed using N-body simulations. It is demonstrated that the shape of the disc-mass distribution has a significant impact on the quantity of the disc-mass and angular momentum losses in star-disc encounters. Most sensitive are the results where the outer parts of the disc are perturbed by high-mass stars. By contrast, disc-penetrating encounters lead more or less independently of the disc-mass distribution always to large losses. However, maximum losses are generally obtained for initially flat distributed disc material. Based on the parameter study a fit formula is derived, describing the relative mass and angular momentum loss dependent on the initial disc-mass distribution index p. Generally encounters lead to a steepening of the density profile of the disc. The resulting profiles can have a r^{-2}-dependence or even steeper independent of the initial distribution of the disc material. From observations the initial density distribution in discs remains unconstrained, so the here demonstrated strong dependence on the initial density distribution might require a revision of the effect of encounters in young stellar clusters. The steep surface density distributions induced by some encounters might be the prerequisite to form planetary systems similar to our own solar system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا